These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 16506843

  • 1. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system.
    Ko WC, Wang HJ, Hwang JS, Hsieh CW.
    J Agric Food Chem; 2006 Mar 08; 54(5):1849-53. PubMed ID: 16506843
    [Abstract] [Full Text] [Related]

  • 2. Highly Efficient and Enzyme-Recoverable Method for Enzymatic Concentrating Omega-3 Fatty Acids Generated by Hydrolysis of Fish Oil in a Substrate-Constituted Three-Liquid-Phase System.
    Li Z, Chen H, Su J, Wang W, Chen H, Yang B, Wang Y.
    J Agric Food Chem; 2019 Mar 06; 67(9):2570-2580. PubMed ID: 30739448
    [Abstract] [Full Text] [Related]

  • 3. One-pot enzymatic synthesis of docosahexaenoic acid-rich triacylglycerols at the sn-1(3) position using by-product from selective hydrolysis of tuna oil.
    Nagao T, Watanabe Y, Maruyama K, Momokawa Y, Kishimoto N, Shimada Y.
    N Biotechnol; 2011 Jan 31; 28(1):7-13. PubMed ID: 20709631
    [Abstract] [Full Text] [Related]

  • 4. Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester.
    Casas-Godoy L, Meunchan M, Cot M, Duquesne S, Bordes F, Marty A.
    J Biotechnol; 2014 Jun 20; 180():30-6. PubMed ID: 24657346
    [Abstract] [Full Text] [Related]

  • 5. Concentration of docosahexaenoic acid from tuna oil via a two lipase-catalyzed reaction.
    Cho Y, Kim BH, Kim Y, Kim IH.
    Food Chem; 2024 Nov 15; 458():140253. PubMed ID: 38964107
    [Abstract] [Full Text] [Related]

  • 6. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase.
    Sampath C, Belur PD, Iyyasami R.
    Enzyme Microb Technol; 2018 Mar 15; 110():20-29. PubMed ID: 29310852
    [Abstract] [Full Text] [Related]

  • 7. Preparation of a crosslinked bioimprinted lipase for enrichment of polyunsaturated fatty acids from fish processing waste.
    Yan J, Li L, Tang Q, Jiang M, Jiang S.
    Appl Biochem Biotechnol; 2010 Oct 15; 162(3):757-65. PubMed ID: 20101527
    [Abstract] [Full Text] [Related]

  • 8. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase.
    Okada T, Morrissey MT.
    J Food Sci; 2008 Apr 15; 73(3):C146-50. PubMed ID: 18387091
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
    Kahveci D, Xu X.
    Biotechnol Lett; 2011 Oct 15; 33(10):2065-71. PubMed ID: 21695486
    [Abstract] [Full Text] [Related]

  • 10. Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment.
    Yan J, Liu S, Hu J, Gui X, Wang G, Yan Y.
    Bioresour Technol; 2011 Jul 15; 102(14):7154-8. PubMed ID: 21565494
    [Abstract] [Full Text] [Related]

  • 11. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure.
    Lyberg AM, Adlercreutz P.
    Biochim Biophys Acta; 2008 Feb 15; 1784(2):343-50. PubMed ID: 18067872
    [Abstract] [Full Text] [Related]

  • 12. Enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides by selective hydrolysis.
    Yang Z, Jin W, Cheng X, Dong Z, Chang M, Wang X.
    Food Chem; 2021 Jun 01; 346():128743. PubMed ID: 33419584
    [Abstract] [Full Text] [Related]

  • 13. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities.
    Kojima Y, Sakuradani E, Shimizu S.
    J Biosci Bioeng; 2006 Sep 01; 102(3):179-83. PubMed ID: 17046530
    [Abstract] [Full Text] [Related]

  • 14. Characteristics of immobilized lipase-catalyzed hydrolysis of olive oil of high concentration in reverse phase system.
    Kang ST, Rhee JS.
    Biotechnol Bioeng; 1989 May 01; 33(11):1469-76. PubMed ID: 18587887
    [Abstract] [Full Text] [Related]

  • 15. Different specificity of two types of Pseudomonas lipases for C20 fatty acids with a Delta5 unsaturated double bond and their application for selective concentration of fatty acids.
    Kojima Y, Sakuradani E, Shimizu S.
    J Biosci Bioeng; 2006 Jun 01; 101(6):496-500. PubMed ID: 16935251
    [Abstract] [Full Text] [Related]

  • 16. Early deposition of n-3 fatty acids from tuna oil in lean and adipose tissue of fattening pigs is mainly permanent.
    Jaturasitha S, Khiaosa-ard R, Pongpiachan P, Kreuzer M.
    J Anim Sci; 2009 Feb 01; 87(2):693-703. PubMed ID: 18849381
    [Abstract] [Full Text] [Related]

  • 17. Enrichment of eicosapentaenoic acid from sardine oil with Delta5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824.
    Chakraborty K, Paulraj R.
    J Agric Food Chem; 2008 Feb 27; 56(4):1428-33. PubMed ID: 18237134
    [Abstract] [Full Text] [Related]

  • 18. Microscopic analysis of ester hydrolysis reaction catalyzed by Candida rugosa lipase.
    Lee S, Hwang S, Lee K, Ahn IS.
    Colloids Surf B Biointerfaces; 2006 Jan 15; 47(1):78-84. PubMed ID: 16406517
    [Abstract] [Full Text] [Related]

  • 19. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D, Sen R, Basu JK, De S.
    Bioresour Technol; 2010 Jan 15; 101(1):6-13. PubMed ID: 19717301
    [Abstract] [Full Text] [Related]

  • 20. [Various lipases for producing products enriched with polyenic acids in fish fat hydrolysis].
    Khasanov KhT, Iakubov IT, Epshteĭn LM, Akulin VN, Latyshev NA, Davranov K, Sas'ianov SP, Rakhimov MM.
    Prikl Biokhim Mikrobiol; 1991 Jan 15; 27(4):554-7. PubMed ID: 1745648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.