These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 16507711

  • 41. Cocaine and caffeine: conditioned place preference, locomotor activity, and additivity.
    Bedingfield JB, King DA, Holloway FA.
    Pharmacol Biochem Behav; 1998 Nov; 61(3):291-6. PubMed ID: 9768563
    [Abstract] [Full Text] [Related]

  • 42. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.
    Gross JD, Kaski SW, Schroer AB, Wix KA, Siderovski DP, Setola V.
    J Psychopharmacol; 2018 Feb; 32(2):191-203. PubMed ID: 29364035
    [Abstract] [Full Text] [Related]

  • 43. KCNQ2/3 channel agonist flupirtine reduces cocaine place preference in rats.
    Mooney J, Rawls SM.
    Behav Pharmacol; 2017 Aug; 28(5):405-407. PubMed ID: 28125509
    [Abstract] [Full Text] [Related]

  • 44. 6-Hydroxydopamine lesions of the olfactory tubercle do not alter (+)-amphetamine-conditioned place preference.
    Clarke PB, White NM, Franklin KB.
    Behav Brain Res; 1990 Jan 01; 36(1-2):185-8. PubMed ID: 2105735
    [Abstract] [Full Text] [Related]

  • 45. Attenuation of cocaine-induced conditioned place preference by Polygala tenuifolia root extract.
    Shin EJ, Oh KW, Kim KW, Kwon YS, Jhoo JH, Jhoo WK, Cha JY, Lim YK, Kim IS, Kim HC.
    Life Sci; 2004 Oct 22; 75(23):2751-64. PubMed ID: 15464827
    [Abstract] [Full Text] [Related]

  • 46. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats.
    Tallarida CS, Tallarida RJ, Rawls SM.
    Drug Alcohol Depend; 2015 Apr 01; 149():145-50. PubMed ID: 25683823
    [Abstract] [Full Text] [Related]

  • 47. The effects of thalamic paraventricular nucleus lesions on cocaine-induced locomotor activity and sensitization.
    Young CD, Deutch AY.
    Pharmacol Biochem Behav; 1998 Jul 01; 60(3):753-8. PubMed ID: 9678661
    [Abstract] [Full Text] [Related]

  • 48. Unique genetic factors influence sensitivity to the rewarding and aversive effects of methamphetamine versus cocaine.
    Gubner NR, Reed C, McKinnon CS, Phillips TJ.
    Behav Brain Res; 2013 Nov 01; 256():420-7. PubMed ID: 23994231
    [Abstract] [Full Text] [Related]

  • 49. Conditioned place preference produced by the psychostimulant cathinone.
    Schechter MD, Meehan SM.
    Eur J Pharmacol; 1993 Feb 23; 232(1):135-8. PubMed ID: 8096187
    [Abstract] [Full Text] [Related]

  • 50. Opioid mediation of cocaine-induced hyperactivity and reinforcement.
    Houdi AA, Bardo MT, Van Loon GR.
    Brain Res; 1989 Sep 11; 497(1):195-8. PubMed ID: 2790454
    [Abstract] [Full Text] [Related]

  • 51. Rats bred for differences in preference to cocaine: other behavioral measurements.
    Schechter MD.
    Pharmacol Biochem Behav; 1992 Dec 11; 43(4):1015-21. PubMed ID: 1475283
    [Abstract] [Full Text] [Related]

  • 52. The distribution of m4 muscarinic acetylcholine receptors in the islands of Calleja and striatum of rats and cynomolgus monkeys.
    Wirtshafter D, Osborn CV.
    J Chem Neuroanat; 2004 Nov 11; 28(3):107-16. PubMed ID: 15482898
    [Abstract] [Full Text] [Related]

  • 53. 6-Hydroxydopamine lesions of the anteromedial ventral striatum impair opposite-sex urinary odor preference in female mice.
    DiBenedictis BT, Olugbemi AO, Baum MJ, Cherry JA.
    Behav Brain Res; 2014 Nov 01; 274():243-7. PubMed ID: 25150042
    [Abstract] [Full Text] [Related]

  • 54. Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system.
    Bozarth MA.
    Behav Brain Res; 1986 Nov 01; 22(2):107-16. PubMed ID: 2878670
    [Abstract] [Full Text] [Related]

  • 55. The new stimulant designer compound pentedrone exhibits rewarding properties and affects dopaminergic activity.
    Hwang JY, Kim JS, Oh JH, Hong SI, Ma SX, Jung YH, Ko YH, Lee SY, Kim HC, Jang CG.
    Addict Biol; 2017 Jan 01; 22(1):117-128. PubMed ID: 26290055
    [Abstract] [Full Text] [Related]

  • 56. Glutamate-dopamine interactions mediate the effects of psychostimulant drugs.
    Wang JQ, McGinty JF.
    Addict Biol; 1999 Apr 01; 4(2):141-50. PubMed ID: 20575780
    [Abstract] [Full Text] [Related]

  • 57. Metabolomics of cocaine: implications in toxicity.
    Dinis-Oliveira RJ.
    Toxicol Mech Methods; 2015 Apr 01; 25(6):494-500. PubMed ID: 26249365
    [Abstract] [Full Text] [Related]

  • 58. Interaction of mazindol with alcohol in mice.
    Gevaerd MS, Takahashi RN.
    Addict Biol; 1996 Apr 01; 1(3):303-7. PubMed ID: 12893470
    [Abstract] [Full Text] [Related]

  • 59. The neurotoxic effects of continuous cocaine and amphetamine in Habenula: implications for the substrates of psychosis.
    Ellison G, Irwin S, Keys A, Noguchi K, Sulur G.
    NIDA Res Monogr; 1996 Apr 01; 163():117-45. PubMed ID: 8809856
    [No Abstract] [Full Text] [Related]

  • 60. Decrease of glycogen synthase kinase 3β phosphorylation in the rat nucleus accumbens shell is necessary for amphetamineinduced conditioned locomotor activity.
    Shin JK, Kim WY, Rim H, Kim JH.
    Korean J Physiol Pharmacol; 2022 Jan 01; 26(1):59-65. PubMed ID: 34965996
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.