These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 16509655

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. PECT model analysis and predictions of experimental collisional energy transfer probabilities P(E',E) and moments <DeltaE> for azulene and biphenylene.
    Lenzer T, Luther K, Nilsson D, Nordholm S.
    J Phys Chem B; 2005 May 05; 109(17):8325-31. PubMed ID: 16851976
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG, Johnson AM, Johnson JA, Judd KA, Kim K, Mayhew M, Powell AL, Sevy ET.
    J Phys Chem A; 2008 Feb 14; 112(6):1157-67. PubMed ID: 18201072
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA, Kim K, Mayhew M, Mitchell DG, Sevy ET.
    J Phys Chem A; 2008 Mar 27; 112(12):2543-52. PubMed ID: 18321080
    [Abstract] [Full Text] [Related]

  • 8. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL, Hsu HC, Lyu JJ, Ni CK.
    J Chem Phys; 2006 Feb 07; 124(5):054302. PubMed ID: 16468864
    [Abstract] [Full Text] [Related]

  • 9. Accounting for the dependence of P(E',E) on the maximum impact parameter in classical trajectory calculations: application to the H2O-H2O collisional relaxation.
    Bustos-Marún RA, Coronado EA, Ferrero JC.
    J Chem Phys; 2007 Oct 21; 127(15):154305. PubMed ID: 17949147
    [Abstract] [Full Text] [Related]

  • 10. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules.
    Barker JR, Weston RE.
    J Phys Chem A; 2010 Oct 07; 114(39):10619-33. PubMed ID: 20843047
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L, Du J, Mullin AS.
    J Chem Phys; 2008 Jul 07; 129(1):014303. PubMed ID: 18624476
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions.
    Havey DK, Liu Q, Li Z, Elioff M, Mullin AS.
    J Phys Chem A; 2007 Dec 27; 111(51):13321-9. PubMed ID: 18052137
    [Abstract] [Full Text] [Related]

  • 16. Energy transfer between azulene and krypton: comparison between experiment and computation.
    Bernshtein V, Oref I.
    J Chem Phys; 2006 Oct 07; 125(13):133105. PubMed ID: 17029431
    [Abstract] [Full Text] [Related]

  • 17. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL, Hsu HC, Hsu YC, Ni CK.
    J Chem Phys; 2007 Sep 14; 127(10):104311. PubMed ID: 17867751
    [Abstract] [Full Text] [Related]

  • 18. Packing density and structure effects on energy-transfer dynamics in argon collisions with organic monolayers.
    Day BS, Morris JR.
    J Chem Phys; 2005 Jun 15; 122(23):234714. PubMed ID: 16008480
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.