These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microfluidic approach for rapid interfacial tension measurement. Xu JH, Li SW, Lan WJ, Luo GS. Langmuir; 2008 Oct 07; 24(19):11287-92. PubMed ID: 18785714 [Abstract] [Full Text] [Related]
3. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Lab Chip; 2006 Mar 07; 6(3):437-46. PubMed ID: 16511628 [Abstract] [Full Text] [Related]
4. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Fidalgo LM, Whyte G, Bratton D, Kaminski CF, Abell C, Huck WT. Angew Chem Int Ed Engl; 2008 Mar 07; 47(11):2042-5. PubMed ID: 18264960 [No Abstract] [Full Text] [Related]
5. Titanium-based dielectrophoresis devices for microfluidic applications. Zhang YT, Bottausci F, Rao MP, Parker ER, Mezic I, Macdonald NC. Biomed Microdevices; 2008 Aug 07; 10(4):509-17. PubMed ID: 18214682 [Abstract] [Full Text] [Related]
6. Electroosmotic mixing in microchannels. Glasgow I, Batton J, Aubry N. Lab Chip; 2004 Dec 07; 4(6):558-62. PubMed ID: 15570365 [Abstract] [Full Text] [Related]
7. The deformation of flexible PDMS microchannels under a pressure driven flow. Hardy BS, Uechi K, Zhen J, Pirouz Kavehpour H. Lab Chip; 2009 Apr 07; 9(7):935-8. PubMed ID: 19294304 [Abstract] [Full Text] [Related]
10. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution. Harel E, Pines A. J Magn Reson; 2008 Aug 07; 193(2):199-206. PubMed ID: 18538599 [Abstract] [Full Text] [Related]
11. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it? Mukhopadhyay R. Anal Chem; 2005 Nov 01; 77(21):429A-432A. PubMed ID: 16285143 [No Abstract] [Full Text] [Related]
12. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Wiklund M, Günther C, Lemor R, Jäger M, Fuhr G, Hertz HM. Lab Chip; 2006 Dec 01; 6(12):1537-44. PubMed ID: 17203158 [Abstract] [Full Text] [Related]
13. Fast on-demand droplet fusion using transient cavitation bubbles. Li ZG, Ando K, Yu JQ, Liu AQ, Zhang JB, Ohl CD. Lab Chip; 2011 Jun 07; 11(11):1879-85. PubMed ID: 21487578 [Abstract] [Full Text] [Related]
14. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS, Song SH, Jung HI. Lab Chip; 2009 Apr 07; 9(7):939-48. PubMed ID: 19294305 [Abstract] [Full Text] [Related]
15. Inertial microfluidics. Di Carlo D. Lab Chip; 2009 Nov 07; 9(21):3038-46. PubMed ID: 19823716 [Abstract] [Full Text] [Related]
16. Fully integrated microfluidic separations systems for biochemical analysis. Roman GT, Kennedy RT. J Chromatogr A; 2007 Oct 19; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293 [Abstract] [Full Text] [Related]
17. Microfluidic based single cell microinjection. Adamo A, Jensen KF. Lab Chip; 2008 Aug 19; 8(8):1258-61. PubMed ID: 18651065 [Abstract] [Full Text] [Related]
18. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading. Wu Z, Hjort K, Wicher G, Fex Svenningsen A. Biomed Microdevices; 2008 Oct 19; 10(5):631-8. PubMed ID: 18461460 [Abstract] [Full Text] [Related]
19. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels. Browne AW, Rust MJ, Jung W, Lee SH, Ahn CH. Lab Chip; 2009 Oct 21; 9(20):2941-6. PubMed ID: 19789747 [Abstract] [Full Text] [Related]
20. Parallel picoliter rt-PCR assays using microfluidics. Marcus JS, Anderson WF, Quake SR. Anal Chem; 2006 Feb 01; 78(3):956-8. PubMed ID: 16448074 [Abstract] [Full Text] [Related] Page: [Next] [New Search]