These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 16518399

  • 1. Structure of a membrane-based steric chaperone in complex with its lipase substrate.
    Pauwels K, Lustig A, Wyns L, Tommassen J, Savvides SN, Van Gelder P.
    Nat Struct Mol Biol; 2006 Apr; 13(4):374-5. PubMed ID: 16518399
    [Abstract] [Full Text] [Related]

  • 2. Affinity-based isolation of a bacterial lipase through steric chaperone interactions.
    Pauwels K, Van Gelder P.
    Protein Expr Purif; 2008 Jun; 59(2):342-8. PubMed ID: 18397833
    [Abstract] [Full Text] [Related]

  • 3. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.
    El Khattabi M, Van Gelder P, Bitter W, Tommassen J.
    J Biol Chem; 2000 Sep 01; 275(35):26885-91. PubMed ID: 10859310
    [Abstract] [Full Text] [Related]

  • 4. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.
    Pauwels K, Sanchez del Pino MM, Feller G, Van Gelder P.
    PLoS One; 2012 Sep 01; 7(5):e36999. PubMed ID: 22615867
    [Abstract] [Full Text] [Related]

  • 5. Chaperoning Anfinsen: the steric foldases.
    Pauwels K, Van Molle I, Tommassen J, Van Gelder P.
    Mol Microbiol; 2007 May 01; 64(4):917-22. PubMed ID: 17501917
    [Abstract] [Full Text] [Related]

  • 6. Functional cell-surface display of a lipase-specific chaperone.
    Wilhelm S, Rosenau F, Becker S, Buest S, Hausmann S, Kolmar H, Jaeger KE.
    Chembiochem; 2007 Jan 02; 8(1):55-60. PubMed ID: 17173269
    [Abstract] [Full Text] [Related]

  • 7. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor.
    El Khattabi M, Ockhuijsen C, Bitter W, Jaeger KE, Tommassen J.
    Mol Gen Genet; 1999 Jun 02; 261(4-5):770-6. PubMed ID: 10394914
    [Abstract] [Full Text] [Related]

  • 8. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE.
    Luo Y, Bertero MG, Frey EA, Pfuetzner RA, Wenk MR, Creagh L, Marcus SL, Lim D, Sicheri F, Kay C, Haynes C, Finlay BB, Strynadka NC.
    Nat Struct Biol; 2001 Dec 02; 8(12):1031-6. PubMed ID: 11685226
    [Abstract] [Full Text] [Related]

  • 9. Crystallization and crystal manipulation of a steric chaperone in complex with its lipase substrate.
    Pauwels K, Loris R, Vandenbussche G, Ruysschaert JM, Wyns L, Van Gelder P.
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug 01; 61(Pt 8):791-5. PubMed ID: 16511160
    [Abstract] [Full Text] [Related]

  • 10. SecB--a chaperone dedicated to protein translocation.
    Bechtluft P, Nouwen N, Tans SJ, Driessen AJ.
    Mol Biosyst; 2010 Apr 01; 6(4):620-7. PubMed ID: 20237639
    [Abstract] [Full Text] [Related]

  • 11. Lipase-specific foldases.
    Rosenau F, Tommassen J, Jaeger KE.
    Chembiochem; 2004 Feb 06; 5(2):152-61. PubMed ID: 14760735
    [Abstract] [Full Text] [Related]

  • 12. Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space.
    Alcock FH, Grossmann JG, Gentle IE, Likić VA, Lithgow T, Tokatlidis K.
    Biochem J; 2008 Jan 15; 409(2):377-87. PubMed ID: 17894549
    [Abstract] [Full Text] [Related]

  • 13. Chaperone release and unfolding of substrates in type III secretion.
    Akeda Y, Galán JE.
    Nature; 2005 Oct 06; 437(7060):911-5. PubMed ID: 16208377
    [Abstract] [Full Text] [Related]

  • 14. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion.
    Evdokimov AG, Phan J, Tropea JE, Routzahn KM, Peters HK, Pokross M, Waugh DS.
    Nat Struct Biol; 2003 Oct 06; 10(10):789-93. PubMed ID: 12958592
    [Abstract] [Full Text] [Related]

  • 15. Structural plasticity of peptidyl-prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR.
    Hu K, Galius V, Pervushin K.
    Biochemistry; 2006 Oct 03; 45(39):11983-91. PubMed ID: 17002297
    [Abstract] [Full Text] [Related]

  • 16. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD.
    Büttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann HH.
    J Mol Biol; 2008 Jan 25; 375(4):997-1012. PubMed ID: 18054956
    [Abstract] [Full Text] [Related]

  • 17. Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli.
    Yang TH, Kwon MA, Song JK, Pan JG, Rhee JS.
    J Biotechnol; 2010 Apr 01; 146(3):126-9. PubMed ID: 20138931
    [Abstract] [Full Text] [Related]

  • 18. A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M.
    Zavialov AV, Knight SD.
    Mol Microbiol; 2007 Apr 01; 64(1):153-64. PubMed ID: 17376079
    [Abstract] [Full Text] [Related]

  • 19. Recyclable chaperone-conjugated magnetic beads for in vitro refolding of Burkholderia cepacia lipase.
    Jung S, Park S.
    Biotechnol Lett; 2009 Jan 01; 31(1):107-11. PubMed ID: 18791662
    [Abstract] [Full Text] [Related]

  • 20. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation.
    Zha D, Zhang H, Zhang H, Xu L, Yan Y.
    Biochimie; 2014 Oct 01; 105():165-71. PubMed ID: 25038570
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.