These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 16518764

  • 1. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species.
    Chamilos G, Lionakis MS, Lewis RE, Lopez-Ribot JL, Saville SP, Albert ND, Halder G, Kontoyiannis DP.
    J Infect Dis; 2006 Apr 01; 193(7):1014-22. PubMed ID: 16518764
    [Abstract] [Full Text] [Related]

  • 2. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium.
    Jayatilake JA, Samaranayake YH, Cheung LK, Samaranayake LP.
    J Oral Pathol Med; 2006 Sep 01; 35(8):484-91. PubMed ID: 16918600
    [Abstract] [Full Text] [Related]

  • 3. Non-lethal Candida albicans cph1/cph1 efg1/efg1 mutant partially protects mice from systemic infections by lethal wild-type cells.
    Yang YL, Wang CW, Chen CT, Wang MH, Hsiao CF, Lo HJ.
    Mycol Res; 2009 Mar 01; 113(Pt 3):388-90. PubMed ID: 19111931
    [Abstract] [Full Text] [Related]

  • 4. The role of secreted aspartyl proteinases in Candida albicans keratitis.
    Jackson BE, Wilhelmus KR, Hube B.
    Invest Ophthalmol Vis Sci; 2007 Aug 01; 48(8):3559-65. PubMed ID: 17652724
    [Abstract] [Full Text] [Related]

  • 5. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T, Samaranayake LP, Jayatilake JA, Egusa H, Yatani H, Seneviratne CJ.
    Int J Antimicrob Agents; 2009 Oct 01; 34(4):333-9. PubMed ID: 19376687
    [Abstract] [Full Text] [Related]

  • 6. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM, Wu TG, Jackson BE, Wilhelmus KR.
    Invest Ophthalmol Vis Sci; 2007 Feb 01; 48(2):774-80. PubMed ID: 17251477
    [Abstract] [Full Text] [Related]

  • 7. Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations.
    Xu Y, Chen L, Li C.
    J Antimicrob Chemother; 2008 Apr 01; 61(4):798-804. PubMed ID: 18218640
    [Abstract] [Full Text] [Related]

  • 8. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD.
    Mol Microbiol; 2006 Aug 01; 61(3):704-22. PubMed ID: 16803598
    [Abstract] [Full Text] [Related]

  • 9. Candida dubliniensis, a new fungal pathogen.
    Gutiérrez J, Morales P, González MA, Quindós G.
    J Basic Microbiol; 2002 Aug 01; 42(3):207-27. PubMed ID: 12111748
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis.
    Asmundsdóttir LR, Erlendsdóttir H, Agnarsson BA, Gottfredsson M.
    Clin Microbiol Infect; 2009 Jun 01; 15(6):576-85. PubMed ID: 19604278
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Drosophila melanogaster as a model to study virulence and azole treatment of the emerging pathogen Candida auris.
    Wurster S, Bandi A, Beyda ND, Albert ND, Raman NM, Raad II, Kontoyiannis DP.
    J Antimicrob Chemother; 2019 Jul 01; 74(7):1904-1910. PubMed ID: 31225606
    [Abstract] [Full Text] [Related]

  • 15. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence.
    Lionakis MS, Lewis RE, May GS, Wiederhold NP, Albert ND, Halder G, Kontoyiannis DP.
    J Infect Dis; 2005 Apr 01; 191(7):1188-95. PubMed ID: 15747256
    [Abstract] [Full Text] [Related]

  • 16. Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection.
    Chen CG, Yang YL, Cheng HH, Su CL, Huang SF, Chen CT, Liu YT, Su IJ, Lo HJ.
    Int J Immunopathol Pharmacol; 2006 Apr 01; 19(3):561-5. PubMed ID: 17026841
    [Abstract] [Full Text] [Related]

  • 17. Corneal virulence of Candida albicans strains deficient in Tup1-regulated genes.
    Jackson BE, Mitchell BM, Wilhelmus KR.
    Invest Ophthalmol Vis Sci; 2007 Jun 01; 48(6):2535-9. PubMed ID: 17525181
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp.
    Pozzatti P, Scheid LA, Spader TB, Atayde ML, Santurio JM, Alves SH.
    Can J Microbiol; 2008 Nov 01; 54(11):950-6. PubMed ID: 18997851
    [Abstract] [Full Text] [Related]

  • 20. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis.
    Navarathna DH, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW.
    J Antimicrob Chemother; 2005 Dec 01; 56(6):1156-9. PubMed ID: 16239285
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.