These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 16521767

  • 1. A constitutive model of the human vocal fold cover for fundamental frequency regulation.
    Zhang K, Siegmund T, Chan RW.
    J Acoust Soc Am; 2006 Feb; 119(2):1050-62. PubMed ID: 16521767
    [Abstract] [Full Text] [Related]

  • 2. Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
    Chan RW, Siegmund T, Zhang K.
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):181-9. PubMed ID: 19415568
    [Abstract] [Full Text] [Related]

  • 3. Modeling of the transient responses of the vocal fold lamina propria.
    Zhang K, Siegmund T, Chan RW.
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):93-104. PubMed ID: 19122858
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A two-layer composite model of the vocal fold lamina propria for fundamental frequency regulation.
    Zhang K, Siegmund T, Chan RW.
    J Acoust Soc Am; 2007 Aug; 122(2):1090-101. PubMed ID: 17672656
    [Abstract] [Full Text] [Related]

  • 6. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
    Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW.
    Biomech Model Mechanobiol; 2013 Jun; 12(3):555-67. PubMed ID: 22886592
    [Abstract] [Full Text] [Related]

  • 7. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
    Kelleher JE, Siegmund T, Chan RW, Henslee EA.
    J Biomech; 2011 Jun 03; 44(9):1729-34. PubMed ID: 21497355
    [Abstract] [Full Text] [Related]

  • 8. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW.
    J Acoust Soc Am; 2013 Mar 03; 133(3):1625-36. PubMed ID: 23464032
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Could spatial heterogeneity in human vocal fold elastic properties improve the quality of phonation?
    Kelleher JE, Siegmund T, Chan RW.
    Ann Biomed Eng; 2012 Dec 03; 40(12):2708-18. PubMed ID: 22707177
    [Abstract] [Full Text] [Related]

  • 12. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.
    Chan RW, Titze IR.
    J Acoust Soc Am; 2000 Jan 03; 107(1):565-80. PubMed ID: 10641665
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Elasticity and stress relaxation of a very small vocal fold.
    Riede T, York A, Furst S, Müller R, Seelecke S.
    J Biomech; 2011 Jul 07; 44(10):1936-40. PubMed ID: 21550608
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Relative contributions of collagen and elastin to elasticity of the vocal fold under tension.
    Chan RW, Fu M, Young L, Tirunagari N.
    Ann Biomed Eng; 2007 Aug 07; 35(8):1471-83. PubMed ID: 17453348
    [Abstract] [Full Text] [Related]

  • 18. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK.
    J Voice; 2014 Nov 07; 28(6):657-67. PubMed ID: 25008382
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T, Schwarz R, Döllinger M, Hoppe U, Eysholdt U, Lohscheller J.
    J Acoust Soc Am; 2006 Aug 07; 120(2):1012-27. PubMed ID: 16938988
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.