These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 16521767

  • 21. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z, Neubauer J, Berry DA.
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [Abstract] [Full Text] [Related]

  • 22. Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds.
    Riede T.
    J Exp Biol; 2010 Sep; 213(Pt 17):2924-32. PubMed ID: 20709920
    [Abstract] [Full Text] [Related]

  • 23. [The characteristic of vocal fold molecular structure].
    Obrebowski A, Wojnowski W, Obrebowska-Karsznia Z.
    Otolaryngol Pol; 2006 Sep; 60(1):9-14. PubMed ID: 16821534
    [Abstract] [Full Text] [Related]

  • 24. Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results.
    Chan RW, Titze IR.
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2008-21. PubMed ID: 10530024
    [Abstract] [Full Text] [Related]

  • 25. Voice simulation with a body-cover model of the vocal folds.
    Story BH, Titze IR.
    J Acoust Soc Am; 1995 Feb; 97(2):1249-60. PubMed ID: 7876446
    [Abstract] [Full Text] [Related]

  • 26. Elasticity of the human false vocal fold.
    Chan RW, Fu M, Tirunagari N.
    Ann Otol Rhinol Laryngol; 2006 May; 115(5):370-81. PubMed ID: 16739670
    [Abstract] [Full Text] [Related]

  • 27. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies.
    Kimura M, Mau T, Chan RW.
    Laryngoscope; 2010 Apr; 120(4):764-8. PubMed ID: 20213661
    [Abstract] [Full Text] [Related]

  • 28. Vocal fold tissue failure: preliminary data and constitutive modeling.
    Chan RW, Siegmund T.
    J Biomech Eng; 2004 Aug; 126(4):466-74. PubMed ID: 15543864
    [Abstract] [Full Text] [Related]

  • 29. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z.
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [Abstract] [Full Text] [Related]

  • 30. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.
    Erath BD, Zañartu M, Peterson SD.
    Biomech Model Mechanobiol; 2017 Jun; 16(3):947-960. PubMed ID: 28004225
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB, Engebretson AM, Vemula NR.
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Vocal fold dynamics for frequency change.
    Hollien H.
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [Abstract] [Full Text] [Related]

  • 36. Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
    Goodyer E, Müller F, Hess M, Kandan K, Farukh F.
    J Voice; 2017 Nov; 31(6):669-674. PubMed ID: 28433346
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY, Solomon NP, Luschei ES, Titze IR, Liu K, Fu TC, Hsu MM.
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.