These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 1652364

  • 1. Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study.
    Ayoubi TA, van Duijnhoven HL, Coenen AJ, Jenks BG, Roubos EW, Martens GJ.
    Cell Tissue Res; 1991 May; 264(2):329-34. PubMed ID: 1652364
    [Abstract] [Full Text] [Related]

  • 2. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis.
    Kolk SM, Berghs CA, Vaudry H, Verhage M, Roubos EW.
    Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760
    [Abstract] [Full Text] [Related]

  • 3. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis.
    Kramer BM, Cruijsen PM, Ouwens DT, Coolen MW, Martens GJ, Roubos EW, Jenks BG.
    Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690
    [Abstract] [Full Text] [Related]

  • 4. Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis.
    Tuinhof R, Ubink R, Tanaka S, Atzori C, van Strien FJ, Roubos EW.
    Cell Tissue Res; 1998 May; 292(2):251-65. PubMed ID: 9560468
    [Abstract] [Full Text] [Related]

  • 5. Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis.
    Wang LC, Meijer HK, Humbel BM, Jenks BG, Roubos EW.
    J Neuroendocrinol; 2004 Jan; 16(1):19-25. PubMed ID: 14962071
    [Abstract] [Full Text] [Related]

  • 6. Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain.
    Kolk SM, Groffen AJ, Tuinhof R, Ouwens DT, Cools AR, Jenks BG, Verhage M, Roubos EW.
    Neuroscience; 2004 Jan; 128(3):531-43. PubMed ID: 15381282
    [Abstract] [Full Text] [Related]

  • 7. Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis.
    Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ, Barendregt HP, Roubos EW.
    Brain Res; 2005 Apr 08; 1040(1-2):14-28. PubMed ID: 15804422
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Expression of neuroendocrine secretory protein 7B2 mRNA in the mouse and rat pituitary gland.
    Marcinkiewicz M, Touraine P, Mbikay M, Chrétien M.
    Neuroendocrinology; 1993 Jul 08; 58(1):86-93. PubMed ID: 7505408
    [Abstract] [Full Text] [Related]

  • 10. The novel pituitary polypeptide 7B2 is a highly-conserved protein coexpressed with proopiomelanocortin.
    Martens GJ, Bussemakers MJ, Ayoubi TA, Jenks BG.
    Eur J Biochem; 1989 Apr 15; 181(1):75-9. PubMed ID: 2714283
    [Abstract] [Full Text] [Related]

  • 11. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG, Kidane AH, Scheenen WJ, Roubos EW.
    Neuroendocrinology; 2007 Apr 15; 85(3):177-85. PubMed ID: 17389778
    [Abstract] [Full Text] [Related]

  • 12. Differential acetylation of pro-opiomelanocortin-derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation.
    van Strien FJ, Galas L, Jenks BG, Roubos EW.
    J Endocrinol; 1995 Jul 15; 146(1):159-67. PubMed ID: 7561613
    [Abstract] [Full Text] [Related]

  • 13. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway.
    Braks JA, Martens GJ.
    Cell; 1994 Jul 29; 78(2):263-73. PubMed ID: 7913882
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation.
    Berghs CA, Tanaka S, Van Strien FJ, Kurabuchi S, Roubos EW.
    J Histochem Cytochem; 1997 Dec 29; 45(12):1673-82. PubMed ID: 9389771
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Biosynthesis of proopiomelanocortin-derived peptides in prohormone convertase 2 and 7B2 null mice.
    Laurent V, Jaubert-Miazza L, Desjardins R, Day R, Lindberg I.
    Endocrinology; 2004 Feb 29; 145(2):519-28. PubMed ID: 14576186
    [Abstract] [Full Text] [Related]

  • 19. Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development.
    Holling TM, van Herp F, Durston AJ, Martens GJ.
    Brain Res Mol Brain Res; 2000 Jan 10; 75(1):70-5. PubMed ID: 10648889
    [Abstract] [Full Text] [Related]

  • 20. Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia.
    Roubos EW.
    Comp Biochem Physiol A Physiol; 1997 Nov 10; 118(3):533-50. PubMed ID: 9406433
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.