These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 16527239
1. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Pullela PK, Chiku T, Carvan MJ, Sem DS. Anal Biochem; 2006 May 15; 352(2):265-73. PubMed ID: 16527239 [Abstract] [Full Text] [Related]
2. A sensitive and selective fluorescent thiol probe in water based on the conjugate 1,4-addition of thiols to alpha,beta-unsaturated ketones. Lin W, Yuan L, Cao Z, Feng Y, Long L. Chemistry; 2009 May 15; 15(20):5096-103. PubMed ID: 19343759 [Abstract] [Full Text] [Related]
3. A fluorescent probe which allows highly specific thiol labeling at low pH. Nielsen JW, Jensen KS, Hansen RE, Gotfredsen CH, Winther JR. Anal Biochem; 2012 Feb 01; 421(1):115-20. PubMed ID: 22178918 [Abstract] [Full Text] [Related]
4. Spectrofluorimetric determination of total free thiols based on formation of complexes of Ce(III) with disulfide bonds. Han GC, Peng Y, Hao YQ, Liu YN, Zhou F. Anal Chim Acta; 2010 Feb 05; 659(1-2):238-42. PubMed ID: 20103130 [Abstract] [Full Text] [Related]
5. Fluorescence imaging of cellular glutathione using a latent rhodamine. Pires MM, Chmielewski J. Org Lett; 2008 Mar 06; 10(5):837-40. PubMed ID: 18257581 [Abstract] [Full Text] [Related]
6. Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. Ros-Lis JV, García B, Jiménez D, Martínez-Máñez R, Sancenón F, Soto J, Gonzalvo F, Valldecabres MC. J Am Chem Soc; 2004 Apr 07; 126(13):4064-5. PubMed ID: 15053569 [Abstract] [Full Text] [Related]
7. Rhodamine-based fluorogenic probe for imaging biological thiol. Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y. Bioorg Med Chem Lett; 2008 Apr 01; 18(7):2246-9. PubMed ID: 18358719 [Abstract] [Full Text] [Related]
8. A colorimetric and fluorescent merocyanine-based probe for biological thiols. Wang SP, Deng WJ, Sun D, Yan M, Zheng H, Xu JG. Org Biomol Chem; 2009 Oct 07; 7(19):4017-20. PubMed ID: 19763305 [Abstract] [Full Text] [Related]
9. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis. Hochgräfe F, Mostertz J, Albrecht D, Hecker M. Mol Microbiol; 2005 Oct 07; 58(2):409-25. PubMed ID: 16194229 [Abstract] [Full Text] [Related]
10. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. Angew Chem Int Ed Engl; 2009 Oct 07; 48(22):4034-7. PubMed ID: 19388016 [Abstract] [Full Text] [Related]
11. Recent advances in separation and detection methods for thiol compounds in biological samples. Toyo'oka T. J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct 15; 877(28):3318-30. PubMed ID: 19357000 [Abstract] [Full Text] [Related]
12. Unexpected reactivity of the burgess reagent with thiols: synthesis of symmetrical disulfides. Banfield SC, Omori AT, Leisch H, Hudlicky T. J Org Chem; 2007 Jun 22; 72(13):4989-92. PubMed ID: 17539682 [Abstract] [Full Text] [Related]
13. A disulfide bound-molecular beacon as a fluorescent probe for the detection of reduced glutathione and its application in cells. Guo Y, Wang H, Sun Y, Qu B. Chem Commun (Camb); 2012 Mar 28; 48(26):3221-3. PubMed ID: 22354149 [Abstract] [Full Text] [Related]
14. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Chen SJ, Chang HT. Anal Chem; 2004 Jul 01; 76(13):3727-34. PubMed ID: 15228347 [Abstract] [Full Text] [Related]
15. Fluorescent and colorimetric probes for detection of thiols. Chen X, Zhou Y, Peng X, Yoon J. Chem Soc Rev; 2010 Jun 01; 39(6):2120-35. PubMed ID: 20502801 [Abstract] [Full Text] [Related]
16. Suppression of thiol exchange reaction in the determination of reduced-form thiols by high-performance liquid chromatography with fluorescence detection after derivatization with fluorogenic benzofurazan reagent, 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate and 4-aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole. Santa T, Aoyama C, Fukushima T, Imai K, Funatsu T. Biomed Chromatogr; 2006 Jun 01; 20(6-7):656-61. PubMed ID: 16779773 [Abstract] [Full Text] [Related]
17. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor. Liu CP, Wu TH, Liu CY, Lin SY. Anal Chim Acta; 2014 Nov 07; 849():57-63. PubMed ID: 25300218 [Abstract] [Full Text] [Related]
18. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes. Rubino FM, Pitton M, Brambilla G, Colombi A. J Mass Spectrom; 2006 Dec 07; 41(12):1578-93. PubMed ID: 17136764 [Abstract] [Full Text] [Related]
19. A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Lou Z, Li P, Sun X, Yang S, Wang B, Han K. Chem Commun (Camb); 2013 Jan 14; 49(4):391-3. PubMed ID: 23187935 [Abstract] [Full Text] [Related]
20. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols. Huang ST, Ting KN, Wang KL. Anal Chim Acta; 2008 Jul 14; 620(1-2):120-6. PubMed ID: 18558132 [Abstract] [Full Text] [Related] Page: [Next] [New Search]