These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 16529933
1. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Giannone G, Sheetz MP. Trends Cell Biol; 2006 Apr; 16(4):213-23. PubMed ID: 16529933 [Abstract] [Full Text] [Related]
2. Protein tyrosine phosphatase kappa and SHP-1 are involved in the regulation of cell-cell contacts at adherens junctions in the exocrine pancreas. Schnekenburger J, Mayerle J, Krüger B, Buchwalow I, Weiss FU, Albrecht E, Samoilova VE, Domschke W, Lerch MM. Gut; 2005 Oct; 54(10):1445-55. PubMed ID: 15987791 [Abstract] [Full Text] [Related]
3. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP. Biophys J; 2006 Mar 01; 90(5):1804-9. PubMed ID: 16339875 [Abstract] [Full Text] [Related]
4. Substrate stiffness and the receptor-type tyrosine-protein phosphatase alpha regulate spreading of colon cancer cells through cytoskeletal contractility. Krndija D, Schmid H, Eismann JL, Lother U, Adler G, Oswald F, Seufferlein T, von Wichert G. Oncogene; 2010 May 06; 29(18):2724-38. PubMed ID: 20208566 [Abstract] [Full Text] [Related]
5. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. Easton JB, Royer AR, Middlemas DS. J Neurochem; 2006 May 06; 97(3):834-45. PubMed ID: 16573649 [Abstract] [Full Text] [Related]
6. Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. McLachlan RW, Yap AS. Cytoskeleton (Hoboken); 2011 Jan 06; 68(1):32-43. PubMed ID: 20925106 [Abstract] [Full Text] [Related]
7. Beta4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. Bertotti A, Comoglio PM, Trusolino L. J Cell Biol; 2006 Dec 18; 175(6):993-1003. PubMed ID: 17158954 [Abstract] [Full Text] [Related]
14. Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding. Mofrad MR, Golji J, Abdul Rahim NA, Kamm RD. Mech Chem Biosyst; 2004 Dec 24; 1(4):253-65. PubMed ID: 16783922 [Abstract] [Full Text] [Related]
15. Integrins, tensegrity, and mechanotransduction. Ingber DE. Gravit Space Biol Bull; 1997 Jun 24; 10(2):49-55. PubMed ID: 11540119 [Abstract] [Full Text] [Related]
16. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Charest A, Wilker EW, McLaughlin ME, Lane K, Gowda R, Coven S, McMahon K, Kovach S, Feng Y, Yaffe MB, Jacks T, Housman D. Cancer Res; 2006 Aug 01; 66(15):7473-81. PubMed ID: 16885344 [Abstract] [Full Text] [Related]
17. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1. Zhang M, Riedel H. J Cell Biochem; 2009 May 01; 107(1):65-75. PubMed ID: 19277985 [Abstract] [Full Text] [Related]
18. Extracellular ATP counteracts the ERK1/2-mediated death-promoting signaling cascades in astrocytes. Shinozaki Y, Koizumi S, Ohno Y, Nagao T, Inoue K. Glia; 2006 Nov 01; 54(6):606-18. PubMed ID: 16944453 [Abstract] [Full Text] [Related]
19. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Vogel V. Annu Rev Biophys Biomol Struct; 2006 Nov 01; 35():459-88. PubMed ID: 16689645 [Abstract] [Full Text] [Related]
20. Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Salvi M, Brunati AM, Toninello A. Free Radic Biol Med; 2005 May 15; 38(10):1267-77. PubMed ID: 15855046 [Abstract] [Full Text] [Related] Page: [Next] [New Search]