These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


91 related items for PubMed ID: 16533043

  • 1. Biochemical and pre-steady-state kinetic characterization of the hepatitis C virus RNA polymerase (NS5BDelta21, HC-J4).
    Cramer J, Jaeger J, Restle T.
    Biochemistry; 2006 Mar 21; 45(11):3610-9. PubMed ID: 16533043
    [Abstract] [Full Text] [Related]

  • 2. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate.
    Wöhrl BM, Krebs R, Goody RS, Restle T.
    J Mol Biol; 1999 Sep 17; 292(2):333-44. PubMed ID: 10493879
    [Abstract] [Full Text] [Related]

  • 3. Pre-steady-state kinetic studies of the fidelity and mechanism of polymerization catalyzed by truncated human DNA polymerase lambda.
    Fiala KA, Abdel-Gawad W, Suo Z.
    Biochemistry; 2004 Jun 01; 43(21):6751-62. PubMed ID: 15157109
    [Abstract] [Full Text] [Related]

  • 4. Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase.
    Johnson RB, Sun XL, Hockman MA, Villarreal EC, Wakulchik M, Wang QM.
    Arch Biochem Biophys; 2000 May 01; 377(1):129-34. PubMed ID: 10775451
    [Abstract] [Full Text] [Related]

  • 5. Kinetic analysis of C-terminally truncated RNA-dependent RNA polymerase of hepatitis C virus.
    Kashiwagi T, Hara K, Kohara M, Kohara K, Iwahashi J, Hamada N, Yoshino H, Toyoda T.
    Biochem Biophys Res Commun; 2002 Feb 01; 290(4):1188-94. PubMed ID: 11811988
    [Abstract] [Full Text] [Related]

  • 6. Analysis of the polymerization kinetics of homodimeric EIAV p51/51 reverse transcriptase implies the formation of a polymerase active site identical to heterodimeric EIAV p66/51 reverse transcriptase.
    Souquet M, Restle T, Krebs R, Le Grice SF, Goody RS, Wöhrl BM.
    Biochemistry; 1998 Sep 01; 37(35):12144-52. PubMed ID: 9724526
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase.
    Johnson RS, Strausbauch M, Carraway JK.
    J Mol Biol; 2011 Oct 07; 412(5):849-61. PubMed ID: 21624374
    [Abstract] [Full Text] [Related]

  • 9. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH, Meek TD.
    Biochemistry; 2008 Aug 19; 47(33):8697-710. PubMed ID: 18656960
    [Abstract] [Full Text] [Related]

  • 10. The GTP binding sites interacted with RNA-dependent RNA polymerase of classical swine fever virus in de novo initiation.
    Xu Z, Chao Y, Si Y, Wang J, Jin M, Guo A, Qian P, Zhou R, Chen H.
    In Silico Biol; 2008 Aug 19; 8(1):21-32. PubMed ID: 18430987
    [Abstract] [Full Text] [Related]

  • 11. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase.
    Kim YG, Yoo JS, Kim JH, Kim CM, Oh JW.
    BMC Mol Biol; 2007 Jul 11; 8():59. PubMed ID: 17623110
    [Abstract] [Full Text] [Related]

  • 12. De novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities.
    Ranjith-Kumar CT, Sarisky RT, Gutshall L, Thomson M, Kao CC.
    J Virol; 2004 Nov 11; 78(22):12207-17. PubMed ID: 15507607
    [Abstract] [Full Text] [Related]

  • 13. Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV.
    Fiala KA, Suo Z.
    Biochemistry; 2004 Feb 24; 43(7):2116-25. PubMed ID: 14967051
    [Abstract] [Full Text] [Related]

  • 14. Mutagenic and inhibitory effects of ribavirin on hepatitis C virus RNA polymerase.
    Vo NV, Young KC, Lai MM.
    Biochemistry; 2003 Sep 09; 42(35):10462-71. PubMed ID: 12950173
    [Abstract] [Full Text] [Related]

  • 15. Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase.
    Ujvári A, Martin CT.
    Biochemistry; 1996 Nov 19; 35(46):14574-82. PubMed ID: 8931555
    [Abstract] [Full Text] [Related]

  • 16. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.
    Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Desprès P, Egloff MP, Canard B.
    Virology; 2006 Jul 20; 351(1):145-58. PubMed ID: 16631221
    [Abstract] [Full Text] [Related]

  • 17. Two N-terminal regions of the Sendai virus L RNA polymerase protein participate in oligomerization.
    Cevik B, Smallwood S, Moyer SA.
    Virology; 2007 Jun 20; 363(1):189-97. PubMed ID: 17331560
    [Abstract] [Full Text] [Related]

  • 18. Probing RNA-protein interactions using pyrene-labeled oligodeoxynucleotides: Qbeta replicase efficiently binds small RNAs by recognizing pyrimidine residues.
    Preuss R, Dapprich J, Walter NG.
    J Mol Biol; 1997 Oct 31; 273(3):600-13. PubMed ID: 9356249
    [Abstract] [Full Text] [Related]

  • 19. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+.
    Arnold JJ, Cameron CE.
    Biochemistry; 2004 May 11; 43(18):5126-37. PubMed ID: 15122878
    [Abstract] [Full Text] [Related]

  • 20. Equivalence of Mg2+ and Na+ ions in salt dependence of the equilibrium binding and dissociation rate constants of Escherichia coli RNA polymerase open complex.
    Loziński T, Bolewska K, Wierzchowski KL.
    Biophys Chem; 2009 Jun 11; 142(1-3):65-75. PubMed ID: 19345467
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.