These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


666 related items for PubMed ID: 16533501

  • 1. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH, Maguire RP, Leenders KL, de Jong BM.
    Brain Res; 2006 Apr 07; 1081(1):179-90. PubMed ID: 16533501
    [Abstract] [Full Text] [Related]

  • 2. Cerebral activation related to skills practice in a double serial reaction time task: striatal involvement in random-order sequence learning.
    Van Der Graaf FH, De Jong BM, Maguire RP, Meiners LC, Leenders KL.
    Brain Res Cogn Brain Res; 2004 Jul 07; 20(2):120-31. PubMed ID: 15183385
    [Abstract] [Full Text] [Related]

  • 3. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults.
    Thomas KM, Hunt RH, Vizueta N, Sommer T, Durston S, Yang Y, Worden MS.
    J Cogn Neurosci; 2004 Oct 07; 16(8):1339-51. PubMed ID: 15509382
    [Abstract] [Full Text] [Related]

  • 4. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC, Sadato N.
    Neuroscience; 2009 May 19; 160(3):688-97. PubMed ID: 19285546
    [Abstract] [Full Text] [Related]

  • 5. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N, Schütze H, Düzel E.
    Neuropsychologia; 2006 May 19; 44(10):1765-76. PubMed ID: 16701731
    [Abstract] [Full Text] [Related]

  • 6. Abnormal activity patterns in premotor cortex during sequence learning in autistic patients.
    Müller RA, Cauich C, Rubio MA, Mizuno A, Courchesne E.
    Biol Psychiatry; 2004 Sep 01; 56(5):323-32. PubMed ID: 15336514
    [Abstract] [Full Text] [Related]

  • 7. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA, Goltz HC, Brown MR, Everling S.
    J Neurophysiol; 2005 Jul 01; 94(1):429-40. PubMed ID: 15728770
    [Abstract] [Full Text] [Related]

  • 8. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP.
    Neuropsychologia; 2004 Jul 01; 42(7):855-67. PubMed ID: 14998701
    [Abstract] [Full Text] [Related]

  • 9. Unity and diversity of tonic and phasic executive control components in episodic and working memory.
    Marklund P, Fransson P, Cabeza R, Larsson A, Ingvar M, Nyberg L.
    Neuroimage; 2007 Jul 15; 36(4):1361-73. PubMed ID: 17524668
    [Abstract] [Full Text] [Related]

  • 10. Functional MRI study of a serial reaction time task in Huntington's disease.
    Kim JS, Reading SA, Brashers-Krug T, Calhoun VD, Ross CA, Pearlson GD.
    Psychiatry Res; 2004 May 30; 131(1):23-30. PubMed ID: 15246452
    [Abstract] [Full Text] [Related]

  • 11. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS, Miyapuram KP, Graydon FX, Doya K.
    Neuroimage; 2006 Aug 15; 32(2):714-27. PubMed ID: 16798015
    [Abstract] [Full Text] [Related]

  • 12. Neural substrates of response-based sequence learning using fMRI.
    Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST.
    J Cogn Neurosci; 2004 Aug 15; 16(1):127-38. PubMed ID: 15006042
    [Abstract] [Full Text] [Related]

  • 13. Neural topography and content of movement representations.
    de Lange FP, Hagoort P, Toni I.
    J Cogn Neurosci; 2005 Jan 15; 17(1):97-112. PubMed ID: 15701242
    [Abstract] [Full Text] [Related]

  • 14. The role of the right anterior insular cortex in the right hemisphere preponderance of stimulus-preceding negativity (SPN): an fMRI study.
    Kotani Y, Ohgami Y, Kuramoto Y, Tsukamoto T, Inoue Y, Aihara Y.
    Neurosci Lett; 2009 Jan 30; 450(2):75-9. PubMed ID: 19028549
    [Abstract] [Full Text] [Related]

  • 15. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K, Staines WR, Black SE, McIlroy WE.
    J Neurosci Methods; 2009 Mar 30; 178(1):65-74. PubMed ID: 19109997
    [Abstract] [Full Text] [Related]

  • 16. Neural evidence of a role for spatial response selection in the learning of spatial sequences.
    Schwarb H, Schumacher EH.
    Brain Res; 2009 Jan 09; 1247():114-25. PubMed ID: 18976640
    [Abstract] [Full Text] [Related]

  • 17. The time course of changes during motor sequence learning: a whole-brain fMRI study.
    Toni I, Krams M, Turner R, Passingham RE.
    Neuroimage; 1998 Jul 09; 8(1):50-61. PubMed ID: 9698575
    [Abstract] [Full Text] [Related]

  • 18. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 19. Prefrontal, parietal and basal activation associated with the reordering of a two-element list held in working memory.
    Van Hecke J, Gladwin TE, Coremans J, Destoop M, Hulstijn W, Sabbe B.
    Biol Psychol; 2010 Sep 23; 85(1):143-8. PubMed ID: 20542080
    [Abstract] [Full Text] [Related]

  • 20. The effect of switching between sequential and repetitive movements on cortical activation.
    Jäncke L, Himmelbach M, Shah NJ, Zilles K.
    Neuroimage; 2000 Nov 23; 12(5):528-37. PubMed ID: 11034860
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.