These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 16537446
1. Structural basis for rodlet assembly in fungal hydrophobins. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP. Proc Natl Acad Sci U S A; 2006 Mar 07; 103(10):3621-6. PubMed ID: 16537446 [Abstract] [Full Text] [Related]
2. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M. J Mol Biol; 2008 Oct 10; 382(3):708-20. PubMed ID: 18674544 [Abstract] [Full Text] [Related]
3. Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. Morris VK, Ren Q, Macindoe I, Kwan AH, Byrne N, Sunde M. J Biol Chem; 2011 May 06; 286(18):15955-63. PubMed ID: 21454575 [Abstract] [Full Text] [Related]
4. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK, Sunde M. Methods Mol Biol; 2013 May 06; 996():119-29. PubMed ID: 23504421 [Abstract] [Full Text] [Related]
5. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M. Methods Mol Biol; 2020 May 06; 2073():55-72. PubMed ID: 31612436 [Abstract] [Full Text] [Related]
6. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M. Proc Natl Acad Sci U S A; 2012 Apr 03; 109(14):E804-11. PubMed ID: 22308366 [Abstract] [Full Text] [Related]
7. The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD. Structure; 2001 Feb 07; 9(2):83-91. PubMed ID: 11250193 [Abstract] [Full Text] [Related]
8. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q, Kwan AH, Sunde M. Proteins; 2014 Jun 07; 82(6):990-1003. PubMed ID: 24218020 [Abstract] [Full Text] [Related]
9. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W. Amino Acids; 2014 Nov 07; 46(11):2615-25. PubMed ID: 25240738 [Abstract] [Full Text] [Related]
10. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ, Lee M, Na S. Colloids Surf B Biointerfaces; 2019 Jan 01; 173():128-138. PubMed ID: 30278361 [Abstract] [Full Text] [Related]
11. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Pham CLL, Rodríguez de Francisco B, Valsecchi I, Dazzoni R, Pillé A, Lo V, Ball SR, Cappai R, Wien F, Kwan AH, Guijarro JI, Sunde M. J Mol Biol; 2018 Oct 12; 430(20):3784-3801. PubMed ID: 30096347 [Abstract] [Full Text] [Related]
12. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Bell-Pedersen D, Dunlap JC, Loros JJ. Genes Dev; 1992 Dec 12; 6(12A):2382-94. PubMed ID: 1459460 [Abstract] [Full Text] [Related]
13. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. Pille A, Kwan AH, Cheung I, Hampsey M, Aimanianda V, Delepierre M, Latge JP, Sunde M, Guijarro JI. Biomol NMR Assign; 2015 Apr 12; 9(1):113-8. PubMed ID: 24659460 [Abstract] [Full Text] [Related]
14. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. Morris VK, Kwan AH, Sunde M. J Mol Biol; 2013 Jan 23; 425(2):244-56. PubMed ID: 23137797 [Abstract] [Full Text] [Related]
15. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. Kallio JM, Linder MB, Rouvinen J. J Biol Chem; 2007 Sep 28; 282(39):28733-28739. PubMed ID: 17636262 [Abstract] [Full Text] [Related]
16. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered β-sheet core amidst structural heterogeneity. Morris VK, Linser R, Wilde KL, Duff AP, Sunde M, Kwan AH. Angew Chem Int Ed Engl; 2012 Dec 07; 51(50):12621-5. PubMed ID: 23125123 [Abstract] [Full Text] [Related]
17. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OM, Sonveaux N, Wösten HA, Ruysschaert JM, Hadziloannou G, Wessels JG, Robillard GT. Biophys J; 1998 Apr 07; 74(4):2059-68. PubMed ID: 9545064 [Abstract] [Full Text] [Related]
18. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Yang W, Ren Q, Wu YN, Morris VK, Rey AA, Braet F, Kwan AH, Sunde M. Biopolymers; 2013 Jan 07; 99(1):84-94. PubMed ID: 23097233 [Abstract] [Full Text] [Related]
19. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Lauter FR, Russo VE, Yanofsky C. Genes Dev; 1992 Dec 07; 6(12A):2373-81. PubMed ID: 1459459 [Abstract] [Full Text] [Related]
20. Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Morris VK, Kwan AH, Mackay JP, Sunde M. Biomol NMR Assign; 2012 Apr 07; 6(1):83-6. PubMed ID: 21845363 [Abstract] [Full Text] [Related] Page: [Next] [New Search]