These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 16542111

  • 1. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I.
    Ihara M, Nishihara H, Yoon KS, Lenz O, Friedrich B, Nakamoto H, Kojima K, Honma D, Kamachi T, Okura I.
    Photochem Photobiol; 2006; 82(3):676-82. PubMed ID: 16542111
    [Abstract] [Full Text] [Related]

  • 2. Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase.
    Ihara M, Nakamoto H, Kamachi T, Okura I, Maeda M.
    Photochem Photobiol; 2006; 82(6):1677-85. PubMed ID: 16836469
    [Abstract] [Full Text] [Related]

  • 3. Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase.
    Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J.
    ACS Nano; 2009 Dec 22; 3(12):4055-61. PubMed ID: 19947646
    [Abstract] [Full Text] [Related]

  • 4. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L.
    Acc Chem Res; 2009 Dec 21; 42(12):1899-909. PubMed ID: 19757805
    [Abstract] [Full Text] [Related]

  • 5. Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase.
    Schwarze A, Kopczak MJ, Rögner M, Lenz O.
    Appl Environ Microbiol; 2010 Apr 21; 76(8):2641-51. PubMed ID: 20154103
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The PsaE subunit is required for complex formation between photosystem I and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803.
    Meimberg K, Lagoutte B, Bottin H, Mühlenhoff U.
    Biochemistry; 1998 Jul 07; 37(27):9759-67. PubMed ID: 9657689
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Light driven hydrogen production in protein based semi-artificial systems.
    Winkler M, Kawelke S, Happe T.
    Bioresour Technol; 2011 Sep 07; 102(18):8493-500. PubMed ID: 21696949
    [Abstract] [Full Text] [Related]

  • 10. Nature-driven photochemistry for catalytic solar hydrogen production: a Photosystem I-transition metal catalyst hybrid.
    Utschig LM, Silver SC, Mulfort KL, Tiede DM.
    J Am Chem Soc; 2011 Oct 19; 133(41):16334-7. PubMed ID: 21923143
    [Abstract] [Full Text] [Related]

  • 11. Solar fuels via artificial photosynthesis.
    Gust D, Moore TA, Moore AL.
    Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921
    [Abstract] [Full Text] [Related]

  • 12. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.
    Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B.
    Chemphyschem; 2010 Apr 26; 11(6):1107-19. PubMed ID: 20186906
    [Abstract] [Full Text] [Related]

  • 13. Design of new strategy for green algal photo-hydrogen production: spectral-selective photosystem I activation and photosystem II deactivation.
    Hoshino T, Johnson DJ, Cuello JL.
    Bioresour Technol; 2012 Sep 26; 120():233-40. PubMed ID: 22820112
    [Abstract] [Full Text] [Related]

  • 14. A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha.
    Friedrich B, Buhrke T, Burgdorf T, Lenz O.
    Biochem Soc Trans; 2005 Feb 26; 33(Pt 1):97-101. PubMed ID: 15667276
    [Abstract] [Full Text] [Related]

  • 15. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.
    Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S.
    Photochem Photobiol Sci; 2009 Feb 26; 8(2):148-56. PubMed ID: 19247505
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin.
    Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D.
    Phys Chem Chem Phys; 2013 Dec 07; 15(45):19608-14. PubMed ID: 24129892
    [Abstract] [Full Text] [Related]

  • 18. Possibilities of biological energy production.
    Keszthelyi L, Bagyinka C, Kovács K, Laczkó I.
    Acta Biochim Biophys Hung; 1986 Dec 07; 21(1-2):99-113. PubMed ID: 3098012
    [Abstract] [Full Text] [Related]

  • 19. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha.
    Porthun A, Bernhard M, Friedrich B.
    Arch Microbiol; 2002 Feb 07; 177(2):159-66. PubMed ID: 11807565
    [Abstract] [Full Text] [Related]

  • 20. Light-induced H2 generation in a photosystem I-O2-tolerant [FeFe] hydrogenase nanoconstruct.
    Rumbaugh TD, Gorka MJ, Baker CS, Golbeck JH, Silakov A.
    Proc Natl Acad Sci U S A; 2024 Aug 20; 121(34):e2400267121. PubMed ID: 39136990
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.