These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1163 related items for PubMed ID: 16543281

  • 1. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X, Miao X.
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [Abstract] [Full Text] [Related]

  • 2. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH, El-Amin SF, Scott KD, Laurencin CT.
    J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560
    [Abstract] [Full Text] [Related]

  • 3. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS.
    Tissue Eng; 2006 Oct 01; 12(10):2997-3006. PubMed ID: 17506618
    [Abstract] [Full Text] [Related]

  • 4. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY.
    J Biomater Appl; 2008 Mar 01; 22(5):409-32. PubMed ID: 17494961
    [Abstract] [Full Text] [Related]

  • 5. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang DA.
    Acta Biomater; 2009 Jun 01; 5(5):1697-707. PubMed ID: 19217361
    [Abstract] [Full Text] [Related]

  • 6. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS.
    J Biomed Mater Res A; 2007 Jan 01; 80(1):206-15. PubMed ID: 17072849
    [Abstract] [Full Text] [Related]

  • 7. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.
    Rowlands AS, Lim SA, Martin D, Cooper-White JJ.
    Biomaterials; 2007 Apr 01; 28(12):2109-21. PubMed ID: 17258315
    [Abstract] [Full Text] [Related]

  • 8. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X.
    Acta Biomater; 2009 Sep 01; 5(7):2680-92. PubMed ID: 19376759
    [Abstract] [Full Text] [Related]

  • 9. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid).
    Miao X, Tan DM, Li J, Xiao Y, Crawford R.
    Acta Biomater; 2008 May 01; 4(3):638-45. PubMed ID: 18054297
    [Abstract] [Full Text] [Related]

  • 10. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E.
    Acta Biomater; 2009 Jan 01; 5(1):305-15. PubMed ID: 18778977
    [Abstract] [Full Text] [Related]

  • 11. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J.
    Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453
    [Abstract] [Full Text] [Related]

  • 12. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering.
    Yao J, Radin S, S Leboy P, Ducheyne P.
    Biomaterials; 2005 May 01; 26(14):1935-43. PubMed ID: 15576167
    [Abstract] [Full Text] [Related]

  • 13. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka AM.
    Biomed Mater; 2014 Oct 20; 9(6):065001. PubMed ID: 25329328
    [Abstract] [Full Text] [Related]

  • 14. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS.
    Biomaterials; 2006 Mar 20; 27(8):1399-409. PubMed ID: 16169074
    [Abstract] [Full Text] [Related]

  • 15. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.
    Biofabrication; 2010 Jun 20; 2(2):025002. PubMed ID: 20811130
    [Abstract] [Full Text] [Related]

  • 16. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F.
    Biomaterials; 2005 Dec 20; 26(36):7564-71. PubMed ID: 16005963
    [Abstract] [Full Text] [Related]

  • 17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F.
    J Biomater Appl; 2011 Nov 20; 26(4):465-89. PubMed ID: 20566654
    [Abstract] [Full Text] [Related]

  • 18. "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds.
    Wu L, Zhang J, Jing D, Ding J.
    J Biomed Mater Res A; 2006 Feb 20; 76(2):264-71. PubMed ID: 16265648
    [Abstract] [Full Text] [Related]

  • 19. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS, Lee EA, Yoon JJ, Park TG.
    Biomaterials; 2005 May 20; 26(14):1925-33. PubMed ID: 15576166
    [Abstract] [Full Text] [Related]

  • 20. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J, Xiao S, Lu X, Wang J, Weng J.
    Biomed Mater; 2006 Dec 20; 1(4):188-92. PubMed ID: 18458404
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 59.