These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1163 related items for PubMed ID: 16543281
21. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds. Zhao L, Wu C, Lin K, Chang J. Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146 [Abstract] [Full Text] [Related]
23. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Zhang H, Ye XJ, Li JS. Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959 [Abstract] [Full Text] [Related]
24. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X. J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [Abstract] [Full Text] [Related]
25. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW, Shin SY, Kim HE, Lee YM, Chung CP, Lee HH, Rhyu IC. J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [Abstract] [Full Text] [Related]
26. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH, Wang XL, Zhang G, He YX, Wang XH, Liu Z, He K, Peng J, Leng Y, Qin L. Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [Abstract] [Full Text] [Related]
27. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Cyster LA, Grant DM, Howdle SM, Rose FR, Irvine DJ, Freeman D, Scotchford CA, Shakesheff KM. Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773 [Abstract] [Full Text] [Related]
28. Transfer of apatite coating from porogens to scaffolds: uniform apatite coating within porous poly(DL-lactic-co-glycolic acid) scaffold in vitro. Li J, Beaussart A, Chen Y, Mak AF. J Biomed Mater Res A; 2007 Jan; 80(1):226-33. PubMed ID: 17072848 [Abstract] [Full Text] [Related]
29. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications. Safinia L, Wilson K, Mantalaris A, Bismarck A. Macromol Biosci; 2007 Mar 08; 7(3):315-27. PubMed ID: 17366509 [Abstract] [Full Text] [Related]
30. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, Xu G, Cui F. Dent Mater; 2007 Sep 08; 23(9):1120-8. PubMed ID: 17095082 [Abstract] [Full Text] [Related]
32. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S, Lee GY, Wong JY, Desai TA. Biomaterials; 2006 Sep 08; 27(27):4775-82. PubMed ID: 16725195 [Abstract] [Full Text] [Related]
33. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair. Mustaffa R, Besar I, Andanastuti M. Med J Malaysia; 2008 Jul 08; 63 Suppl A():95-6. PubMed ID: 19025001 [Abstract] [Full Text] [Related]
34. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérôme R. Biomaterials; 2004 Aug 08; 25(18):4185-94. PubMed ID: 15046908 [Abstract] [Full Text] [Related]
35. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L. J Biomed Mater Res A; 2005 Jun 15; 73(4):398-408. PubMed ID: 15892136 [Abstract] [Full Text] [Related]
36. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D, Watzinger E, Weissenböck M, Yerit K, Cvikl B, Thurnher D, Ewers R. Clin Oral Implants Res; 2005 Aug 15; 16(4):417-24. PubMed ID: 16117765 [Abstract] [Full Text] [Related]
37. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L, Meng D, Knowles JC, Roy I, Boccaccini AR. Acta Biomater; 2010 Jul 15; 6(7):2773-86. PubMed ID: 20056174 [Abstract] [Full Text] [Related]
38. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH, Lee LY, Jackson JS, Tong YW, Wang CH. Biotechnol Bioeng; 2008 Aug 01; 100(5):998-1009. PubMed ID: 18551526 [Abstract] [Full Text] [Related]
39. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q, Rahaman MN, Fu H, Liu X. J Biomed Mater Res A; 2010 Oct 01; 95(1):164-71. PubMed ID: 20544804 [Abstract] [Full Text] [Related]
40. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T, Abdel-Fattah WI, Laurencin CT. Biomaterials; 2006 Oct 01; 27(28):4894-903. PubMed ID: 16762408 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]