These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 16547220
1. Cutting edge: enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. Lu W, Hisatsune A, Koga T, Kato K, Kuwahara I, Lillehoj EP, Chen W, Cross AS, Gendler SJ, Gewirtz AT, Kim KC. J Immunol; 2006 Apr 01; 176(7):3890-4. PubMed ID: 16547220 [Abstract] [Full Text] [Related]
2. Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Kato K, Lillehoj EP, Kim KC. Inflamm Res; 2016 Mar 01; 65(3):225-33. PubMed ID: 26645913 [Abstract] [Full Text] [Related]
3. Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. Kato K, Lillehoj EP, Park YS, Umehara T, Hoffman NE, Madesh M, Kim KC. J Immunol; 2012 Feb 15; 188(4):2014-22. PubMed ID: 22250084 [Abstract] [Full Text] [Related]
4. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Choi S, Park YS, Koga T, Treloar A, Kim KC. Am J Respir Cell Mol Biol; 2011 Feb 15; 44(2):255-60. PubMed ID: 20448050 [Abstract] [Full Text] [Related]
5. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. Lillehoj EP, Guang W, Hyun SW, Liu A, Hegerle N, Simon R, Cross AS, Ishida H, Luzina IG, Atamas SP, Goldblum SE. J Biol Chem; 2019 Jan 11; 294(2):662-678. PubMed ID: 30429216 [Abstract] [Full Text] [Related]
6. Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa. Jeyaseelan S, Young SK, Yamamoto M, Arndt PG, Akira S, Kolls JK, Worthen GS. J Immunol; 2006 Jul 01; 177(1):538-47. PubMed ID: 16785551 [Abstract] [Full Text] [Related]
7. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Anas AA, van Lieshout MH, Claushuis TA, de Vos AF, Florquin S, de Boer OJ, Hou B, Van't Veer C, van der Poll T. Am J Physiol Lung Cell Mol Physiol; 2016 Aug 01; 311(2):L219-28. PubMed ID: 27288486 [Abstract] [Full Text] [Related]
8. Redundant and cooperative interactions between TLR5 and NLRC4 in protective lung mucosal immunity against Pseudomonas aeruginosa. Tolle L, Yu FS, Kovach MA, Ballinger MN, Newstead MW, Zeng X, Nunez G, Standiford TJ. J Innate Immun; 2015 Aug 01; 7(2):177-86. PubMed ID: 25402425 [Abstract] [Full Text] [Related]
9. MUC1 ectodomain is a flagellin-targeting decoy receptor and biomarker operative during Pseudomonas aeruginosa lung infection. Verceles AC, Bhat P, Nagaria Z, Martin D, Patel H, Ntem-Mensah A, Hyun SW, Hahn A, Jeudy J, Cross AS, Lillehoj EP, Goldblum SE. Sci Rep; 2021 Nov 22; 11(1):22725. PubMed ID: 34811449 [Abstract] [Full Text] [Related]
10. Bronchial epithelial DNA methyltransferase 3b dampens pulmonary immune responses during Pseudomonas aeruginosa infection. Qin W, Brands X, Van't Veer C, F de Vos A, Sirard JC, J T H Roelofs J, P Scicluna B, van der Poll T. PLoS Pathog; 2021 Apr 22; 17(4):e1009491. PubMed ID: 33793661 [Abstract] [Full Text] [Related]
11. Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Kato K, Hanss AD, Zemskova MA, Morgan NE, Kim M, Knox KS, Lin Y, Lillehoj EP, Kim KC. Biochem Biophys Res Commun; 2017 Oct 14; 492(2):231-235. PubMed ID: 28822766 [Abstract] [Full Text] [Related]
12. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schäfer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Döring G, Riethmüller J, Kormann M, Hartl D. J Immunol; 2013 Feb 01; 190(3):1276-84. PubMed ID: 23277486 [Abstract] [Full Text] [Related]
14. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction. Pène F, Grimaldi D, Zuber B, Sauneuf B, Rousseau C, El Hachem C, Martin C, Belaïdouni N, Balloy V, Mira JP, Chiche JD. J Infect Dis; 2012 Sep 15; 206(6):932-42. PubMed ID: 22782952 [Abstract] [Full Text] [Related]
15. Bone morphogenetic protein 4 inhibits liposaccharide-induced inflammation in the airway. Li Z, Wang J, Wang Y, Jiang H, Xu X, Zhang C, Li D, Xu C, Zhang K, Qi Y, Gong X, Tang C, Zhong N, Lu W. Eur J Immunol; 2014 Nov 15; 44(11):3283-94. PubMed ID: 25142202 [Abstract] [Full Text] [Related]
16. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. Yu FS, Cornicelli MD, Kovach MA, Newstead MW, Zeng X, Kumar A, Gao N, Yoon SG, Gallo RL, Standiford TJ. J Immunol; 2010 Jul 15; 185(2):1142-9. PubMed ID: 20566829 [Abstract] [Full Text] [Related]
17. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia. Morris AE, Liggitt HD, Hawn TR, Skerrett SJ. Am J Physiol Lung Cell Mol Physiol; 2009 Dec 15; 297(6):L1112-9. PubMed ID: 19801452 [Abstract] [Full Text] [Related]
18. MUC1 expression by human airway epithelial cells mediates Pseudomonas aeruginosa adhesion. Kato K, Lillehoj EP, Kai H, Kim KC. Front Biosci (Elite Ed); 2010 Jan 01; 2(1):68-77. PubMed ID: 20036855 [Abstract] [Full Text] [Related]
19. Airway Administration of Flagellin Regulates the Inflammatory Response to Pseudomonas aeruginosa. López-Gálvez R, Fleurot I, Chamero P, Trapp S, Olivier M, Chevaleyre C, Barc C, Riou M, Rossignol C, Guillon A, Si-Tahar M, May T, Barbry P, Bähr A, Klymiuk N, Sirard JC, Caballero I. Am J Respir Cell Mol Biol; 2021 Oct 01; 65(4):378-389. PubMed ID: 34102087 [Abstract] [Full Text] [Related]