These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 16548000

  • 1. Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater.
    Schuler AJ.
    Biotechnol Bioeng; 2006 Aug 05; 94(5):909-20. PubMed ID: 16548000
    [Abstract] [Full Text] [Related]

  • 2. Distributed state simulation of endogenous processes in biological wastewater treatment.
    Schuler AJ, Jassby D.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1087-97. PubMed ID: 17216663
    [Abstract] [Full Text] [Related]

  • 3. Diversity matters: dynamic simulation of distributed bacterial states in suspended growth biological wastewater treatment systems.
    Schuler AJ.
    Biotechnol Bioeng; 2005 Jul 05; 91(1):62-74. PubMed ID: 15880520
    [Abstract] [Full Text] [Related]

  • 4. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses.
    Hirota R, Kuroda A, Kato J, Ohtake H.
    J Biosci Bioeng; 2010 May 05; 109(5):423-32. PubMed ID: 20347763
    [Abstract] [Full Text] [Related]

  • 5. Distributed microbial state effects on competition in enhanced biological phosphorus removal systems.
    Schuler AJ.
    Water Sci Technol; 2006 May 05; 54(1):199-207. PubMed ID: 16898153
    [Abstract] [Full Text] [Related]

  • 6. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process.
    Li N, Ren NQ, Wang XH, Kang H.
    Bioresour Technol; 2010 Aug 05; 101(15):6265-8. PubMed ID: 20363119
    [Abstract] [Full Text] [Related]

  • 7. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands.
    López-Vázquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MC.
    Water Res; 2008 May 05; 42(10-11):2349-60. PubMed ID: 18272198
    [Abstract] [Full Text] [Related]

  • 8. Performance of IFAS wastewater treatment processes for biological phosphorus removal.
    Sriwiriyarat T, Randall CW.
    Water Res; 2005 Oct 05; 39(16):3873-84. PubMed ID: 16126245
    [Abstract] [Full Text] [Related]

  • 9. Biotreatment of phenol-contaminated wastewater in a spiral packed-bed bioreactor.
    Lin CW, Yen CH, Tsai SL.
    Bioprocess Biosyst Eng; 2009 Aug 05; 32(5):575-80. PubMed ID: 19130091
    [Abstract] [Full Text] [Related]

  • 10. Predicted distributed state effects on enhanced biological phosphorus removal in a 5-stage Bardenpho wastewater treatment configuration.
    Schuler AJ, Xiao Y.
    Water Environ Res; 2008 May 05; 80(5):454-63. PubMed ID: 18605384
    [Abstract] [Full Text] [Related]

  • 11. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions.
    Pijuan M, Guisasola A, Baeza JA, Carrera J, Casas C, Lafuente J.
    J Biotechnol; 2006 May 03; 123(1):117-26. PubMed ID: 16324760
    [Abstract] [Full Text] [Related]

  • 12. The contribution of 'omic'-based approaches to the study of enhanced biological phosphorus removal microbiology.
    Forbes CM, O'Leary ND, Dobson AD, Marchesi JR.
    FEMS Microbiol Ecol; 2009 Jul 03; 69(1):1-15. PubMed ID: 19486153
    [Abstract] [Full Text] [Related]

  • 13. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J.
    J Biotechnol; 2006 May 03; 123(1):22-32. PubMed ID: 16293332
    [Abstract] [Full Text] [Related]

  • 14. Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors.
    Weissbrodt DG, Holliger C, Morgenroth E.
    Biotechnol Bioeng; 2017 Aug 03; 114(8):1688-1702. PubMed ID: 28322436
    [Abstract] [Full Text] [Related]

  • 15. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process.
    Zhang T, Liu Y, Fang HH.
    Biotechnol Bioeng; 2005 Oct 20; 92(2):173-82. PubMed ID: 15962340
    [Abstract] [Full Text] [Related]

  • 16. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance.
    Slater FR, Singer AC, Turner S, Barr JJ, Bond PL.
    FEMS Microbiol Lett; 2011 Feb 20; 315(1):17-22. PubMed ID: 21133989
    [Abstract] [Full Text] [Related]

  • 17. A thermal adaptation of bacteria to cold temperatures in an enhanced biological phosphorus removal system.
    Erdal UG, Erdal ZK, Randall CW.
    Water Sci Technol; 2003 Feb 20; 47(11):123-8. PubMed ID: 12906280
    [Abstract] [Full Text] [Related]

  • 18. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B.
    Water Sci Technol; 2005 Feb 20; 52(10-11):543-8. PubMed ID: 16459832
    [Abstract] [Full Text] [Related]

  • 19. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.
    Bucci V, Majed N, Hellweger FL, Gu AZ.
    Environ Sci Technol; 2012 Mar 20; 46(6):3244-52. PubMed ID: 22360302
    [Abstract] [Full Text] [Related]

  • 20. Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater.
    Park KY, Lee JW, Song KG, Ahn KH.
    Bioresour Technol; 2011 Feb 20; 102(3):2462-7. PubMed ID: 21109429
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.