These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


671 related items for PubMed ID: 16548583

  • 1. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L, Mantalaris A, Bismarck A.
    Langmuir; 2006 Mar 28; 22(7):3235-42. PubMed ID: 16548583
    [Abstract] [Full Text] [Related]

  • 2. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q.
    J Biomater Sci Polym Ed; 2010 Mar 28; 21(12):1637-52. PubMed ID: 20537246
    [Abstract] [Full Text] [Related]

  • 3. Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds.
    Nakamatsu J, Torres FG, Troncoso OP, Min-Lin Y, Boccaccini AR.
    Biomacromolecules; 2006 Dec 28; 7(12):3345-55. PubMed ID: 17154462
    [Abstract] [Full Text] [Related]

  • 4. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation.
    Heijkants RG, van Calck RV, van Tienen TG, de Groot JH, Pennings AJ, Buma P, Veth RP, Schouten AJ.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):921-32. PubMed ID: 18228268
    [Abstract] [Full Text] [Related]

  • 5. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA.
    Biomaterials; 2007 May 15; 28(15):2491-504. PubMed ID: 17335896
    [Abstract] [Full Text] [Related]

  • 6. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications.
    Safinia L, Wilson K, Mantalaris A, Bismarck A.
    Macromol Biosci; 2007 Mar 08; 7(3):315-27. PubMed ID: 17366509
    [Abstract] [Full Text] [Related]

  • 7. Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.
    Lin-Gibson S, Cooper JA, Landis FA, Cicerone MT.
    Biomacromolecules; 2007 May 08; 8(5):1511-8. PubMed ID: 17381151
    [Abstract] [Full Text] [Related]

  • 8. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA, Skudas R, Unger KK, Lubda D.
    J Chromatogr A; 2007 Mar 09; 1144(1):14-29. PubMed ID: 17126846
    [Abstract] [Full Text] [Related]

  • 9. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN, Woodhouse KA, Fromstein JD, Chase DB, Rabolt JF.
    J Biomater Sci Polym Ed; 2007 Mar 09; 18(6):743-58. PubMed ID: 17623555
    [Abstract] [Full Text] [Related]

  • 10. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.
    Gorna K, Gogolewski S.
    J Biomed Mater Res A; 2006 Oct 09; 79(1):128-38. PubMed ID: 16779769
    [Abstract] [Full Text] [Related]

  • 11. Pore size distribution in tablets measured with a morphological sieve.
    Wu YS, van Vliet LJ, Frijlink HW, van der Voort Maarschalk K.
    Int J Pharm; 2007 Sep 05; 342(1-2):176-83. PubMed ID: 17580106
    [Abstract] [Full Text] [Related]

  • 12. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications.
    Peyrin F, Mastrogiacomo M, Cancedda R, Martinetti R.
    Biotechnol Bioeng; 2007 Jun 15; 97(3):638-48. PubMed ID: 17089389
    [Abstract] [Full Text] [Related]

  • 13. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A, Kovács J, Szabóné Revész P.
    Acta Pharm Hung; 2006 Jun 15; 76(3):119-25. PubMed ID: 17094658
    [Abstract] [Full Text] [Related]

  • 14. Assessment of scaffold porosity: the new route of micro-CT.
    Bertoldi S, Farè S, Tanzi MC.
    J Appl Biomater Biomech; 2011 Jun 15; 9(3):165-75. PubMed ID: 22139756
    [Abstract] [Full Text] [Related]

  • 15. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J, Zima A, Czechowska J, Szlazak K, Ślosarczyk A, Konopka K.
    Biomed Mater Eng; 2017 Jun 15; 28(3):235-246. PubMed ID: 28527187
    [Abstract] [Full Text] [Related]

  • 16. Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores.
    Tanaka M, Takebayashi M, Miyama M, Nishida J, Shimomura M.
    Biomed Mater Eng; 2004 Jun 15; 14(4):439-46. PubMed ID: 15472392
    [Abstract] [Full Text] [Related]

  • 17. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S, Chen X, Li M.
    Prep Biochem Biotechnol; 2011 Jun 15; 41(1):53-72. PubMed ID: 21229464
    [Abstract] [Full Text] [Related]

  • 18. Porous structure of natural and modified clinoptilolites.
    Kowalczyk P, Sprynskyy M, Terzyk AP, Lebedynets M, Namieśnik J, Buszewski B.
    J Colloid Interface Sci; 2006 May 01; 297(1):77-85. PubMed ID: 16310211
    [Abstract] [Full Text] [Related]

  • 19. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M, Abukawa H, Troulis MJ, Vacanti JP.
    J Biomed Mater Res A; 2008 Mar 01; 84(3):702-9. PubMed ID: 17635029
    [Abstract] [Full Text] [Related]

  • 20. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study.
    Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J, Huang X.
    Tissue Eng Part A; 2010 Dec 01; 16(12):3791-803. PubMed ID: 20673021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.