These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. L-cysteine efflux in erythrocytes as a function of human age: correlation with reduced glutathione and total anti-oxidant potential. Kumar P, Maurya PK. Rejuvenation Res; 2013 Jun; 16(3):179-84. PubMed ID: 23442131 [Abstract] [Full Text] [Related]
3. Specificity and directionality of thiol effects on sinusoidal glutathione transport in rat liver. Lu SC, Kuhlenkamp J, Ge JL, Sun WM, Kaplowitz N. Mol Pharmacol; 1994 Sep; 46(3):578-85. PubMed ID: 7935341 [Abstract] [Full Text] [Related]
6. Efflux of glutathione and glutathione complexes from human erythrocytes in response to vanadate. Cakir Y, Yildiz D. Blood Cells Mol Dis; 2013 Jan; 50(1):1-7. PubMed ID: 22824382 [Abstract] [Full Text] [Related]
7. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells. Heggland I, Kaur P, Syversen T. Toxicol In Vitro; 2009 Sep; 23(6):1020-7. PubMed ID: 19540910 [Abstract] [Full Text] [Related]
8. Direct measurement of the rate of glutathione synthesis in 1-chloro-2,4-dinitrobenzene treated human erythrocytes. Raftos JE, Dwarte TM, Luty A, Willcock CJ. Redox Rep; 2006 Sep; 11(1):9-14. PubMed ID: 16571271 [Abstract] [Full Text] [Related]
10. Transport of L-cysteine and reduced glutathione through biological membranes. Yoshimura K, Iwauchi Y, Sugiyama S, Kuwamura T, Odaka Y, Satoh T, Kitagawa H. Res Commun Chem Pathol Pharmacol; 1982 Aug; 37(2):171-86. PubMed ID: 7134626 [Abstract] [Full Text] [Related]
11. HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: evidence for nitrite-induced GSH oxidation to GSSG. Michaelsen JT, Dehnert S, Giustarini D, Beckmann B, Tsikas D. J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct 15; 877(28):3405-17. PubMed ID: 19665947 [Abstract] [Full Text] [Related]
14. [Ca+-dependent efflux of K+ from erythrocytes, induced by an oxidative process]. Giul'khandanian AV, Geokchakian GM. Biofizika; 1991 Oct 15; 36(1):169-71. PubMed ID: 1854826 [Abstract] [Full Text] [Related]
15. S-thiolation mimicry: quantitative and kinetic analysis of redox status of protein cysteines by glutathione-affinity chromatography. Niture SK, Velu CS, Bailey NI, Srivenugopal KS. Arch Biochem Biophys; 2005 Dec 15; 444(2):174-84. PubMed ID: 16297848 [Abstract] [Full Text] [Related]
16. The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects. Sahaf B, Heydari K, Herzenberg LA, Herzenberg LA. Arch Biochem Biophys; 2005 Feb 01; 434(1):26-32. PubMed ID: 15629105 [Abstract] [Full Text] [Related]
17. [Study of the arsenate reducted by common reducing agents]. Fu J, Xue P, Jin Y, He M. Wei Sheng Yan Jiu; 2008 Jan 01; 37(1):19-21. PubMed ID: 18421855 [Abstract] [Full Text] [Related]
19. Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Ookhtens M, Kaplowitz N. Semin Liver Dis; 1998 Jan 01; 18(4):313-29. PubMed ID: 9875551 [Abstract] [Full Text] [Related]
20. Whole blood-, plasma- and red blood cell glutathione and cysteine in patients with kidney disease and during hemodialysis. Jacobson SH, Moldéus P. Clin Nephrol; 1994 Sep 01; 42(3):189-92. PubMed ID: 7994938 [Abstract] [Full Text] [Related] Page: [Next] [New Search]