These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 16555775
1. An ultrasonic transducer for second harmonic imaging using a LiNbO3 plate with a local ferroelectric inversion layer. Nakamura K, Fukazawa K, Yamada K, Saito S. IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):651-5. PubMed ID: 16555775 [Abstract] [Full Text] [Related]
2. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer. Nakamura K, Fukazawa K, Yamada K, Saito S. IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1558-62. PubMed ID: 14682639 [Abstract] [Full Text] [Related]
3. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal. Zhou Q, Cannata JM, Guo H, Huang C, Marmarelis VZ, Shung KK. IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):127-33. PubMed ID: 15742569 [Abstract] [Full Text] [Related]
5. Broadband focusing ultrasonic transducers based on dimpled LiNbO3 plate with inversion layer. Chen J, Dai JY, Zhang C, Zhang Z, Feng G. IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2797-802. PubMed ID: 23221229 [Abstract] [Full Text] [Related]
6. Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation. Gui L, Hu H, Garcia-Granda M, Sohler W. Opt Express; 2009 Mar 02; 17(5):3923-8. PubMed ID: 19259233 [Abstract] [Full Text] [Related]
7. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal. Zhou QF, Cannata J, Kirk Shung K. Ultrasonics; 2006 Dec 22; 44 Suppl 1():e607-11. PubMed ID: 16797635 [Abstract] [Full Text] [Related]
8. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic. Lee J, Moon JY, Chang JH. Sensors (Basel); 2018 Jul 15; 18(7):. PubMed ID: 30011948 [Abstract] [Full Text] [Related]
9. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition. Brown J, Sharma S, Leadbetter J, Cochran S, Adamson R. IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov 15; 61(11):1911-21. PubMed ID: 25389169 [Abstract] [Full Text] [Related]
10. A single-element transducer with nonuniform thickness for high-frequency broadband applications. Liu JH, Chen SY, Li PC. IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb 15; 56(2):379-86. PubMed ID: 19251525 [Abstract] [Full Text] [Related]
11. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation. Assouar BM, Vincent B, Moubchir H. IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb 15; 55(2):273-8. PubMed ID: 18334333 [Abstract] [Full Text] [Related]
12. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3. Lehtonen S, Plessky VP, Salomaa MM. IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar 15; 51(3):343-51. PubMed ID: 15128221 [Abstract] [Full Text] [Related]
13. A new ultrasonic transducer for improved contrast nonlinear imaging. Bouakaz A, Cate Ft, de Jong N. Phys Med Biol; 2004 Aug 21; 49(16):3515-25. PubMed ID: 15446784 [Abstract] [Full Text] [Related]
14. Thickness design, fabrication, and evaluation of 100-MHz polyurea ultrasonic transducer. Nakazawa M, Tabaru M, Aoyagi T, Nakamura K, Ueha S. IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct 21; 60(10):2175-88. PubMed ID: 24081266 [Abstract] [Full Text] [Related]
15. Experimental investigation of finite amplitude distortion-based, second harmonic pulse echo ultrasonic imaging. Christopher T. IEEE Trans Ultrason Ferroelectr Freq Control; 1998 Oct 21; 45(1):158-62. PubMed ID: 18244167 [Abstract] [Full Text] [Related]
16. Phases of the SAW reflection and transmission coefficients for short reflectors on 128 degree LiNbO3. Lehtonen S, Plessky VP, Béreux N, Salomaa MM. IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec 21; 51(12):1671-82. PubMed ID: 15690727 [Abstract] [Full Text] [Related]
17. Investigation of a Solid-State Tuning Behavior in Lithium Niobate. Branch DW, Jensen DS, Nordquist CD, Siddiqui A, Douglas JK, Eichenfield M, Friedmann TA. IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb 21; 67(2):365-373. PubMed ID: 31567077 [Abstract] [Full Text] [Related]
18. An analytical model of multilayer ultrasonic transducers with an inversion layer. Huang C, Marmarelis VZ, Zhou Q, Shung KK. IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar 21; 52(3):469-79. PubMed ID: 15857055 [Abstract] [Full Text] [Related]
19. 31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode. Sugita T, Mizuuchi K, Kitaoka Y, Yamamoto K. Opt Lett; 1999 Nov 15; 24(22):1590-2. PubMed ID: 18079873 [Abstract] [Full Text] [Related]
20. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging. Lee J, Shin EJ, Lee C, Chang JH. IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep 15; 65(9):1571-1582. PubMed ID: 29994203 [Abstract] [Full Text] [Related] Page: [Next] [New Search]