These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 16563016

  • 21. Real-time ligand binding pocket database search using local surface descriptors.
    Chikhi R, Sael L, Kihara D.
    Proteins; 2010 Jul; 78(9):2007-28. PubMed ID: 20455259
    [Abstract] [Full Text] [Related]

  • 22. A knowledge-based weighting approach to ligand-based virtual screening.
    Stiefl N, Zaliani A.
    J Chem Inf Model; 2006 Jul; 46(2):587-96. PubMed ID: 16562987
    [Abstract] [Full Text] [Related]

  • 23. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI, Pentikäinen OT.
    J Chem Inf Model; 2010 Jun 28; 50(6):1005-11. PubMed ID: 20504004
    [Abstract] [Full Text] [Related]

  • 24. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.
    Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D.
    J Chem Inf Model; 2006 Jun 28; 46(2):717-27. PubMed ID: 16563002
    [Abstract] [Full Text] [Related]

  • 25. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching.
    Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A.
    J Chem Inf Model; 2006 Jun 28; 46(2):462-70. PubMed ID: 16562973
    [Abstract] [Full Text] [Related]

  • 26. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS, McMartin C.
    J Med Chem; 1992 May 15; 35(10):1671-84. PubMed ID: 1588550
    [Abstract] [Full Text] [Related]

  • 27. Ligand binding site similarity identification based on chemical and geometric similarity.
    Tu H, Shi T.
    Protein J; 2013 Jun 15; 32(5):373-85. PubMed ID: 23700221
    [Abstract] [Full Text] [Related]

  • 28. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C, Bohacek RS.
    J Comput Aided Mol Des; 1997 Jul 15; 11(4):333-44. PubMed ID: 9334900
    [Abstract] [Full Text] [Related]

  • 29. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis.
    Harigua-Souiai E, Cortes-Ciriano I, Desdouits N, Malliavin TE, Guizani I, Nilges M, Blondel A, Bouvier G.
    BMC Bioinformatics; 2015 Mar 21; 16():93. PubMed ID: 25888251
    [Abstract] [Full Text] [Related]

  • 30. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B, Zaslavskiy M, Vert JP, Stoven V.
    BMC Bioinformatics; 2010 Feb 22; 11():99. PubMed ID: 20175916
    [Abstract] [Full Text] [Related]

  • 31. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N, Rognan D.
    J Chem Inf Model; 2009 Apr 22; 49(4):1049-62. PubMed ID: 19301874
    [Abstract] [Full Text] [Related]

  • 32. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.
    Shin WH, Kihara D.
    Methods Mol Biol; 2018 Apr 22; 1762():105-121. PubMed ID: 29594770
    [Abstract] [Full Text] [Related]

  • 33. Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens.
    Lo YC, Senese S, Li CM, Hu Q, Huang Y, Damoiseaux R, Torres JZ.
    PLoS Comput Biol; 2015 Mar 22; 11(3):e1004153. PubMed ID: 25826798
    [Abstract] [Full Text] [Related]

  • 34. Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design.
    Sotriffer C, Klebe G.
    Farmaco; 2002 Mar 22; 57(3):243-51. PubMed ID: 11989803
    [Abstract] [Full Text] [Related]

  • 35. NMR and in silico screening.
    Rüdisser S, Jahnke W.
    Comb Chem High Throughput Screen; 2002 Dec 22; 5(8):591-603. PubMed ID: 12470256
    [Abstract] [Full Text] [Related]

  • 36. A chemogenomics view on protein-ligand spaces.
    Strömbergsson H, Kleywegt GJ.
    BMC Bioinformatics; 2009 Jun 16; 10 Suppl 6(Suppl 6):S13. PubMed ID: 19534738
    [Abstract] [Full Text] [Related]

  • 37. In search of novel ligands using a structure-based approach: a case study on the adenosine A2A receptor.
    Lenselink EB, Beuming T, van Veen C, Massink A, Sherman W, van Vlijmen HW, IJzerman AP.
    J Comput Aided Mol Des; 2016 Oct 16; 30(10):863-874. PubMed ID: 27629350
    [Abstract] [Full Text] [Related]

  • 38. A novel search engine for virtual screening of very large databases.
    Vidal D, Thormann M, Pons M.
    J Chem Inf Model; 2006 Oct 16; 46(2):836-43. PubMed ID: 16563015
    [Abstract] [Full Text] [Related]

  • 39. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H, Kryshtafovych A, Prusis P, Fidelis K, Wikberg JE, Komorowski J, Hvidsten TR.
    Proteins; 2006 Nov 15; 65(3):568-79. PubMed ID: 16948162
    [Abstract] [Full Text] [Related]

  • 40. PLIC: protein-ligand interaction clusters.
    Anand P, Nagarajan D, Mukherjee S, Chandra N.
    Database (Oxford); 2014 Nov 15; 2014(0):bau029. PubMed ID: 24763918
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.