These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


55 related items for PubMed ID: 1656701

  • 1. Fibrin(ogen) degradation product peptide 6A increases femoral artery blood flow in dogs.
    Saldeen K, Nichols W, Lawson D, Andersson R, Saldeen T, Mehta J.
    Acta Physiol Scand; 1991 Jul; 142(3):339-44. PubMed ID: 1656701
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effects of peptide 6A on coronary blood flow dynamics in canine coronary thrombosis.
    Mehta JL, Nichols WW, Saldeen TG.
    J Cardiovasc Pharmacol; 1989 Jun; 13(6):803-11. PubMed ID: 2484073
    [Abstract] [Full Text] [Related]

  • 4. Effect of L-arginine and an arginine-containing pentapeptide on canine femoral arterial blood flow.
    Saldeen K, Nichols WW, Nicolini F, Mehta J.
    Ups J Med Sci; 1991 Jun; 96(2):113-8. PubMed ID: 1776215
    [Abstract] [Full Text] [Related]

  • 5. Indapamide potentiates the endothelium-dependent production of cyclic guanosine monophosphate by bradykinin in the canine femoral artery.
    Junquero DC, Schini VB, Vanhoutte PM.
    Am Heart J; 1991 Oct; 122(4 Pt 2):1204-9. PubMed ID: 1656721
    [Abstract] [Full Text] [Related]

  • 6. Flow-induced release of endothelium-derived relaxing factor.
    Rubanyi GM, Romero JC, Vanhoutte PM.
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H1145-9. PubMed ID: 3487253
    [Abstract] [Full Text] [Related]

  • 7. Heterogeneity of endothelium-dependent responses to acetylcholine in canine femoral arteries and veins. Separation of the role played by endothelial and smooth muscle cells.
    Rubanyi GM, Vanhoutte PM.
    Blood Vessels; 1988 Jun; 25(2):75-81. PubMed ID: 3257889
    [Abstract] [Full Text] [Related]

  • 8. Dalteparin, a low molecular weight heparin, attenuates inflammatory responses and reduces ischemia-reperfusion-induced liver injury in rats.
    Harada N, Okajima K, Uchiba M.
    Crit Care Med; 2006 Jul; 34(7):1883-91. PubMed ID: 16641616
    [Abstract] [Full Text] [Related]

  • 9. Combined thrombolytic effects of tissue-plasminogen activator and a fibrinogen-degradation product peptide 6A or iloprost.
    Nichols WW, Nicolini FA, Saldeen TG, Mehta JL.
    J Cardiovasc Pharmacol; 1991 Aug; 18(2):231-6. PubMed ID: 1717784
    [Abstract] [Full Text] [Related]

  • 10. Renal and femoral vascular responses to endothelin-1 in dogs: role of prostaglandins.
    Miura K, Yukimura T, Yamashita Y, Shimmen T, Okumura M, Yamanaka S, Imanishi M, Yamamoto K.
    J Pharmacol Exp Ther; 1991 Jan; 256(1):11-7. PubMed ID: 1988651
    [Abstract] [Full Text] [Related]

  • 11. Replacement of L-Lys by D-Lys(NH2) in peptide Ala-Arg-Pro-Ala-Lys (peptide 6A) increases its coronary blood flow-promoting properties.
    Saldeen TG, Nichols WW, Saldeen K, Wallin R, Mehta JL.
    J Cardiovasc Pharmacol; 1994 Jan; 23(1):103-6. PubMed ID: 7511720
    [Abstract] [Full Text] [Related]

  • 12. The influence of prostacyclin on hemodynamic and coronary blood flow in dogs.
    Teesalu R, Kòrgevee A.
    Biomed Biochim Acta; 1988 Jan; 47(10-11):S56-9. PubMed ID: 3073770
    [Abstract] [Full Text] [Related]

  • 13. Distinctive effect of angiotensin II on prostaglandin production in dog renal and femoral arteries.
    Satoh H, Hosono M, Satoh S.
    Prostaglandins; 1984 Jun; 27(6):807-20. PubMed ID: 6385144
    [Abstract] [Full Text] [Related]

  • 14. Effects of low molecular weight fibrin degradation products 6A and 6D on rabbit aorta strips.
    Marceau F, Bouthillier J, Tremblay B, St-Pierre S.
    Agents Actions; 1987 Oct; 22(1-2):43-9. PubMed ID: 3318324
    [Abstract] [Full Text] [Related]

  • 15. Fibrin(ogen)-derived peptide B beta 30-43 increases coronary blood flow in the anesthetized dog.
    Nichols WW, Mehta J, Wargovich T, Saldeen K, Wallin R, Saldeen T.
    Thromb Res; 1985 Jul 15; 39(2):223-9. PubMed ID: 3895564
    [Abstract] [Full Text] [Related]

  • 16. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.
    Kartamyshev SP, Balashov SA, Melkumyants AM.
    J Vasc Res; 2007 Jul 15; 44(1):1-10. PubMed ID: 17148940
    [Abstract] [Full Text] [Related]

  • 17. In vitro pharmacological study of femoral artery vascular reactivity after inferior canine hindlimb ischemia/reperfusion: effects of in vivo nitric oxide blocker infusion.
    Joviliano EE, Piccinato CE, Cherri J, Viaro F, Moryia T, Celotto AC, Bonaventura D, Evora PR.
    Ann Vasc Surg; 2007 Sep 15; 21(5):618-28. PubMed ID: 17823044
    [Abstract] [Full Text] [Related]

  • 18. Stereoselective effect of diltiazem on endothelium-dependent relaxations in canine femoral arteries.
    Rubanyi GM, Hoeffner U, Schwartz A, Vanhoutte PM.
    J Pharmacol Exp Ther; 1988 Jul 15; 246(1):60-4. PubMed ID: 2455796
    [Abstract] [Full Text] [Related]

  • 19. Ranolazine injection into coronary or femoral arteries exerts marked, transient regional vasodilation without systemic hypotension in an intact porcine model.
    Nieminen T, Tavares CA, Pegler JR, Belardinelli L, Verrier RL.
    Circ Cardiovasc Interv; 2011 Oct 01; 4(5):481-7. PubMed ID: 21953372
    [Abstract] [Full Text] [Related]

  • 20. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM, Ryman T, Högestätt ED.
    Acta Physiol Scand; 1995 Nov 01; 155(3):257-66. PubMed ID: 8619323
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.