These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
542 related items for PubMed ID: 16570077
1. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR. J Cereb Blood Flow Metab; 2006 Dec; 26(12):1507-18. PubMed ID: 16570077 [Abstract] [Full Text] [Related]
2. Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR. J Cereb Blood Flow Metab; 2007 May; 27(5):939-49. PubMed ID: 16955078 [Abstract] [Full Text] [Related]
4. Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Toscano CD, O'Callaghan JP, Guilarte TR. Brain Res; 2005 May 17; 1044(1):51-8. PubMed ID: 15862789 [Abstract] [Full Text] [Related]
6. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. Zhao D, Watson JB, Xie CW. J Neurophysiol; 2004 Nov 17; 92(5):2853-8. PubMed ID: 15212428 [Abstract] [Full Text] [Related]
7. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo. Yamagata Y, Imoto K, Obata K. Neuroscience; 2006 Jul 07; 140(3):981-92. PubMed ID: 16632208 [Abstract] [Full Text] [Related]
8. [Influence of stress on the activation of CaMKII in the brain]. Suenaga T, Morinobu S, Yamawaki S. Nihon Shinkei Seishin Yakurigaku Zasshi; 2006 Aug 07; 26(4):169-75. PubMed ID: 17020133 [Abstract] [Full Text] [Related]
9. Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons. Gu Z, Jiang Q, Yuen EY, Yan Z. Mol Pharmacol; 2006 Mar 07; 69(3):813-22. PubMed ID: 16365279 [Abstract] [Full Text] [Related]
10. Ca2+/calmodulin-dependent protein kinase II is reversibly autophosphorylated, inactivated and made sedimentable by acute neuronal excitation in rats in vivo. Yamagata Y, Obata K. J Neurochem; 2004 Nov 07; 91(3):745-54. PubMed ID: 15485503 [Abstract] [Full Text] [Related]
11. Changes in trkB-ERK1/2-CREB/Elk-1 pathways in hippocampal mossy fiber organization after traumatic brain injury. Hu B, Liu C, Bramlett H, Sick TJ, Alonso OF, Chen S, Dietrich WD. J Cereb Blood Flow Metab; 2004 Aug 07; 24(8):934-43. PubMed ID: 15362724 [Abstract] [Full Text] [Related]
12. Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y, Takeuchi Y, Watanabe M, Fukunaga K, Kondo H. Eur J Neurosci; 2005 Dec 07; 22(11):2697-707. PubMed ID: 16324104 [Abstract] [Full Text] [Related]
13. Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet. Sharp JW, Ross CM, Koehnle TJ, Gietzen DW. Neuroscience; 2004 Dec 07; 126(4):1053-62. PubMed ID: 15207338 [Abstract] [Full Text] [Related]
14. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K. J Neurochem; 2006 Apr 07; 97(1):22-9. PubMed ID: 16515554 [Abstract] [Full Text] [Related]
15. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M. Neuroscience; 2005 Apr 07; 136(2):397-403. PubMed ID: 16182449 [Abstract] [Full Text] [Related]
16. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Griesbach GS, Gomez-Pinilla F, Hovda DA. Brain Res; 2004 Aug 06; 1016(2):154-62. PubMed ID: 15246851 [Abstract] [Full Text] [Related]
17. Reduced basal CaMKII levels in hippocampal CA1 region: possible cause of stress-induced impairment of LTP in chronically stressed rats. Gerges NZ, Aleisa AM, Schwarz LA, Alkadhi KA. Hippocampus; 2004 Aug 06; 14(3):402-10. PubMed ID: 15132438 [Abstract] [Full Text] [Related]
18. Dysregulated CREB signaling pathway in the brain of neural cell adhesion molecule (NCAM)-deficient mice. Aonurm-Helm A, Zharkovsky T, Jürgenson M, Kalda A, Zharkovsky A. Brain Res; 2008 Dec 03; 1243():104-12. PubMed ID: 18817764 [Abstract] [Full Text] [Related]
19. The expression of calcium/calmodulin-dependent protein kinase II-alpha in the hippocampus of patients with Alzheimer's disease and its links with AD-related pathology. Wang YJ, Chen GH, Hu XY, Lu YP, Zhou JN, Liu RY. Brain Res; 2005 Jan 07; 1031(1):101-8. PubMed ID: 15621017 [Abstract] [Full Text] [Related]
20. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Izquierdo I, Medina JH. Neurobiol Learn Mem; 1997 Nov 07; 68(3):285-316. PubMed ID: 9398590 [Abstract] [Full Text] [Related] Page: [Next] [New Search]