These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


689 related items for PubMed ID: 16570944

  • 1. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.
    Hwang BJ, Chen CH, Sarma LS, Chen JM, Wang GR, Tang MT, Liu DG, Lee JF.
    J Phys Chem B; 2006 Apr 06; 110(13):6475-82. PubMed ID: 16570944
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P.
    ACS Nano; 2009 Oct 27; 3(10):3127-37. PubMed ID: 19731934
    [Abstract] [Full Text] [Related]

  • 5. Relating the composition of Pt(x)Ru(100-x)/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction.
    Taufany F, Pan CJ, Lai FJ, Chou HL, Sarma LS, Rick J, Lin JM, Lee JF, Tang MT, Hwang BJ.
    Chemistry; 2013 Jan 14; 19(3):905-15. PubMed ID: 23197430
    [Abstract] [Full Text] [Related]

  • 6. Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy.
    Chen CH, Hwang BJ, Wang GR, Sarma LS, Tang MT, Liu DG, Lee JF.
    J Phys Chem B; 2005 Nov 24; 109(46):21566-75. PubMed ID: 16853800
    [Abstract] [Full Text] [Related]

  • 7. Investigation on mechanism of catalysis by Pt-LiCoO2 for hydrolysis of sodium borohydride using X-ray absorption.
    Liu RS, Lai HC, Bagkar NC, Kuo HT, Chen HM, Lee JF, Chung HJ, Chang SM, Weng BJ.
    J Phys Chem B; 2008 Apr 24; 112(16):4870-5. PubMed ID: 18386860
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Effect of surface segregation on the methanol oxidation reaction in carbon-supported Pt-Ru alloy nanoparticles.
    Jeon TY, Lee KS, Yoo SJ, Cho YH, Kang SH, Sung YE.
    Langmuir; 2010 Jun 01; 26(11):9123-9. PubMed ID: 20377220
    [Abstract] [Full Text] [Related]

  • 10. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance.
    Chang SH, Su WN, Yeh MH, Pan CJ, Yu KL, Liu DG, Lee JF, Hwang BJ.
    Chemistry; 2010 Sep 24; 16(36):11064-71. PubMed ID: 20690117
    [Abstract] [Full Text] [Related]

  • 11. Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids.
    Ueji M, Harada M, Kimura Y.
    J Colloid Interface Sci; 2008 Jun 01; 322(1):358-63. PubMed ID: 18377917
    [Abstract] [Full Text] [Related]

  • 12. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J, Liu T, Loo YS, Grushko B, Borgna A.
    Phys Chem Chem Phys; 2009 Feb 28; 11(8):1196-208. PubMed ID: 19209363
    [Abstract] [Full Text] [Related]

  • 13. Atomic distribution and structural evolution of mesostructured PtRu nanoparticles electrodeposited on a microemulsion lyotropic liquid-crystalline template probed using EXAFS and XANES.
    Chen SA, Liang YC, Lu KT, Pao CW, Lee JF, Lin TL, Chen JM.
    Phys Chem Chem Phys; 2014 Mar 07; 16(9):3939-45. PubMed ID: 24346132
    [Abstract] [Full Text] [Related]

  • 14. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation.
    Holstein WL, Rosenfeld HD.
    J Phys Chem B; 2005 Feb 17; 109(6):2176-86. PubMed ID: 16851209
    [Abstract] [Full Text] [Related]

  • 15. An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.
    Principi E, Witkowska A, Dsoke S, Marassi R, Di Cicco A.
    Phys Chem Chem Phys; 2009 Nov 21; 11(43):9987-95. PubMed ID: 19865750
    [Abstract] [Full Text] [Related]

  • 16. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M.
    J Am Chem Soc; 2010 Jun 02; 132(21):7418-28. PubMed ID: 20459102
    [Abstract] [Full Text] [Related]

  • 17. Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy.
    Hwang BJ, Sarma LS, Chen JM, Chen CH, Shih SC, Wang GR, Liu DG, Lee JF, Tang MT.
    J Am Chem Soc; 2005 Aug 10; 127(31):11140-5. PubMed ID: 16076222
    [Abstract] [Full Text] [Related]

  • 18. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS.
    Jacobs G, Chaney JA, Patterson PM, Das TK, Maillot JC, Davis BH.
    J Synchrotron Radiat; 2004 Sep 01; 11(Pt 5):414-22. PubMed ID: 15310958
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
    Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi MM, Mangeney C, Villain F, Fiévet F.
    Langmuir; 2005 Jul 19; 21(15):6788-96. PubMed ID: 16008388
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.