These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
388 related items for PubMed ID: 16571390
1. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users. Kotajarvi BR, Basford JR, An KN, Morrow DA, Kaufman KR. Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390 [Abstract] [Full Text] [Related]
2. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds. Richter WM, Rodriguez R, Woods KR, Axelson PW. Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680 [Abstract] [Full Text] [Related]
3. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact. Kwarciak AM, Sisto SA, Yarossi M, Price R, Komaroff E, Boninger ML. Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825 [Abstract] [Full Text] [Related]
4. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, Cooper RA. Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997 [Abstract] [Full Text] [Related]
5. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion. Koontz AM, Roche BM, Collinger JL, Cooper RA, Boninger ML. Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217 [Abstract] [Full Text] [Related]
6. Filter frequency selection for manual wheelchair biomechanics. Cooper RA, DiGiovine CP, Boninger ML, Shimada SD, Koontz AM, Baldwin MA. J Rehabil Res Dev; 2002 Nov; 39(3):323-36. PubMed ID: 12173753 [Abstract] [Full Text] [Related]
7. The influence of verbal training and visual feedback on manual wheelchair propulsion. DeGroot KK, Hollingsworth HH, Morgan KA, Morris CL, Gray DB. Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097 [Abstract] [Full Text] [Related]
8. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814 [Abstract] [Full Text] [Related]
9. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems. Mukherjee G, Samanta A. J Rehabil Res Dev; 2001 May; 38(4):391-9. PubMed ID: 11563492 [Abstract] [Full Text] [Related]
10. Kinematic characterization of wheelchair propulsion. Shimada SD, Robertson RN, Bonninger ML, Cooper RA. J Rehabil Res Dev; 1998 Jun; 35(2):210-8. PubMed ID: 9651893 [Abstract] [Full Text] [Related]
11. Consequences of a cross slope on wheelchair handrim biomechanics. Richter WM, Rodriguez R, Woods KR, Axelson PW. Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679 [Abstract] [Full Text] [Related]
12. Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons. Desroches G, Aissaoui R, Bourbonnais D. Arch Phys Med Rehabil; 2008 Jun; 89(6):1155-61. PubMed ID: 18503814 [Abstract] [Full Text] [Related]
13. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes. Vanlandewijck YC, Spaepen AJ, Lysens RJ. Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958 [Abstract] [Full Text] [Related]
14. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion. Patterson P, Draper S. Biomed Sci Instrum; 1997 Nov; 33():477-81. PubMed ID: 9731406 [Abstract] [Full Text] [Related]
15. Effects of single-variable biofeedback on wheelchair handrim biomechanics. Richter WM, Kwarciak AM, Guo L, Turner JT. Arch Phys Med Rehabil; 2011 Apr; 92(4):572-7. PubMed ID: 21440701 [Abstract] [Full Text] [Related]
16. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback. Rice IM, Pohlig RT, Gallagher JD, Boninger ML. Arch Phys Med Rehabil; 2013 Feb; 94(2):256-63. PubMed ID: 23022092 [Abstract] [Full Text] [Related]
17. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. Beekman CE, Miller-Porter L, Schoneberger M. Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055 [Abstract] [Full Text] [Related]
18. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury. Nash MS, Koppens D, van Haaren M, Sherman AL, Lippiatt JP, Lewis JE. Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235 [Abstract] [Full Text] [Related]
19. Evaluation of a pushrim-activated, power-assisted wheelchair. Cooper RA, Fitzgerald SG, Boninger ML, Prins K, Rentschler AJ, Arva J, O'connor TJ. Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854 [Abstract] [Full Text] [Related]
20. Effect of backrest height on wheelchair propulsion biomechanics for level and uphill conditions. Yang YS, Koontz AM, Yeh SJ, Chang JJ. Arch Phys Med Rehabil; 2012 Apr; 93(4):654-9. PubMed ID: 22325682 [Abstract] [Full Text] [Related] Page: [Next] [New Search]