These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 16572216

  • 1. Zeolite nanoparticle modified microchip reactor for efficient protein digestion.
    Huang Y, Shan W, Liu B, Liu Y, Zhang Y, Zhao Y, Lu H, Tang Y, Yang P.
    Lab Chip; 2006 Apr; 6(4):534-9. PubMed ID: 16572216
    [Abstract] [Full Text] [Related]

  • 2. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H, Wang H, Huang Y, Zhong W, Lu H, Kong J, Yang P, Liu B.
    Anal Chem; 2004 Nov 01; 76(21):6426-33. PubMed ID: 15516137
    [Abstract] [Full Text] [Related]

  • 3. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
    Liu J, Lin S, Qi D, Deng C, Yang P, Zhang X.
    J Chromatogr A; 2007 Dec 28; 1176(1-2):169-77. PubMed ID: 18021785
    [Abstract] [Full Text] [Related]

  • 4. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors.
    Ji J, Zhang Y, Zhou X, Kong J, Tang Y, Liu B.
    Anal Chem; 2008 Apr 01; 80(7):2457-63. PubMed ID: 18321132
    [Abstract] [Full Text] [Related]

  • 5. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres.
    Li Y, Yan B, Deng C, Yu W, Xu X, Yang P, Zhang X.
    Proteomics; 2007 Jul 01; 7(14):2330-9. PubMed ID: 17570518
    [Abstract] [Full Text] [Related]

  • 6. Strategy for allosteric analysis based on protein-patterned stationary phase in microfluidic chip.
    Bi H, Weng X, Qu H, Kong J, Yang P, Liu B.
    J Proteome Res; 2005 Jul 01; 4(6):2154-60. PubMed ID: 16335962
    [Abstract] [Full Text] [Related]

  • 7. Trypsin entrapped in poly(diallyldimethylammonium chloride) silica sol-gel microreactor coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Xu X, Wang X, Liu Y, Liu B, Wu H, Yang P.
    Rapid Commun Mass Spectrom; 2008 Apr 01; 22(8):1257-64. PubMed ID: 18383213
    [Abstract] [Full Text] [Related]

  • 8. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography.
    Gao M, Zhang P, Hong G, Guan X, Yan G, Deng C, Zhang X.
    J Chromatogr A; 2009 Oct 30; 1216(44):7472-7. PubMed ID: 19481218
    [Abstract] [Full Text] [Related]

  • 9. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Lin S, Lin Z, Yao G, Deng C, Yang P, Zhang X.
    Rapid Commun Mass Spectrom; 2007 Oct 30; 21(23):3910-8. PubMed ID: 17990248
    [Abstract] [Full Text] [Related]

  • 10. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry.
    Spross J, Sinz A.
    Anal Chem; 2010 Feb 15; 82(4):1434-43. PubMed ID: 20099804
    [Abstract] [Full Text] [Related]

  • 11. Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature.
    Jeng J, Lin MF, Cheng FY, Yeh CS, Shiea J.
    Rapid Commun Mass Spectrom; 2007 Feb 15; 21(18):3060-8. PubMed ID: 17705254
    [Abstract] [Full Text] [Related]

  • 12. Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS.
    Lee J, Soper SA, Murray KK.
    Analyst; 2009 Dec 15; 134(12):2426-33. PubMed ID: 19918612
    [Abstract] [Full Text] [Related]

  • 13. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y.
    Proteomics; 2011 Mar 15; 11(5):991-5. PubMed ID: 21280225
    [Abstract] [Full Text] [Related]

  • 14. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H, Chen Z, Zhang L, Yang P, Chen G.
    J Chromatogr A; 2008 Feb 01; 1179(2):224-8. PubMed ID: 18096173
    [Abstract] [Full Text] [Related]

  • 15. On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Li Y, Yan B, Xu X, Deng C, Yang P, Shen X, Zhang X.
    Rapid Commun Mass Spectrom; 2007 Feb 01; 21(14):2263-8. PubMed ID: 17577873
    [Abstract] [Full Text] [Related]

  • 16. Assembly-controlled biocompatible interface on a microchip: strategy to highly efficient proteolysis.
    Liu Y, Zhong W, Meng S, Kong J, Lu H, Yang P, Girault HH, Liu B.
    Chemistry; 2006 Aug 25; 12(25):6585-91. PubMed ID: 16800018
    [Abstract] [Full Text] [Related]

  • 17. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis.
    Li Y, Xu X, Deng C, Yang P, Zhang X.
    J Proteome Res; 2007 Sep 25; 6(9):3849-55. PubMed ID: 17676785
    [Abstract] [Full Text] [Related]

  • 18. ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis.
    Shen W, Xiong H, Xu Y, Cai S, Lu H, Yang P.
    Anal Chem; 2008 Sep 01; 80(17):6758-63. PubMed ID: 18681459
    [Abstract] [Full Text] [Related]

  • 19. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T, Wang S, Chen G.
    Talanta; 2009 Mar 15; 77(5):1767-73. PubMed ID: 19159796
    [Abstract] [Full Text] [Related]

  • 20. Mass spectrometric analysis of affinity-captured proteins on a dendrimer-based immunosensing surface: investigation of on-chip proteolytic digestion.
    Seok HJ, Hong MY, Kim YJ, Han MK, Lee D, Lee JH, Yoo JS, Kim HS.
    Anal Biochem; 2005 Feb 15; 337(2):294-307. PubMed ID: 15691510
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.