These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


832 related items for PubMed ID: 16575564

  • 1. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S, Mizuike A, Fukuda H, Kondo A.
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [Abstract] [Full Text] [Related]

  • 2. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A.
    J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417
    [Abstract] [Full Text] [Related]

  • 3. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S.
    Bioresour Technol; 2009 Apr 30; 100(8):2392-8. PubMed ID: 19128960
    [Abstract] [Full Text] [Related]

  • 4. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S.
    Appl Microbiol Biotechnol; 2008 Nov 30; 81(2):243-55. PubMed ID: 18751695
    [Abstract] [Full Text] [Related]

  • 5. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L.
    Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076
    [Abstract] [Full Text] [Related]

  • 6. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A, Sawayama S.
    Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018
    [Abstract] [Full Text] [Related]

  • 7. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May 06; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 8. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH, Kodaki T, Park YC, Seo JH.
    J Biotechnol; 2012 Apr 30; 158(4):184-91. PubMed ID: 21699927
    [Abstract] [Full Text] [Related]

  • 9. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.
    Appl Microbiol Biotechnol; 2009 Sep 30; 84(4):751-61. PubMed ID: 19506862
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A, Sawayama S.
    J Biosci Bioeng; 2008 Sep 30; 106(3):306-9. PubMed ID: 18930011
    [Abstract] [Full Text] [Related]

  • 12. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL, Betancur GJ, Vasquez MP, Gomes Ede B, Pereira N.
    Appl Biochem Biotechnol; 2011 Apr 30; 163(7):928-36. PubMed ID: 20890779
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Hou J, Shen Y, Li XP, Bao XM.
    Lett Appl Microbiol; 2007 Aug 30; 45(2):184-9. PubMed ID: 17651216
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 42.