These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 16580804

  • 1. HSF expression in skeletal muscle during myogenesis: implications for failed regeneration in old mice.
    McArdle A, Broome CS, Kayani AC, Tully MD, Close GL, Vasilaki A, Jackson MJ.
    Exp Gerontol; 2006 May; 41(5):497-500. PubMed ID: 16580804
    [Abstract] [Full Text] [Related]

  • 2. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M.
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [Abstract] [Full Text] [Related]

  • 3. The E protein HEB is preferentially expressed in developing muscle.
    Conway K, Pin C, Kiernan JA, Merrifield P.
    Differentiation; 2004 Sep; 72(7):327-40. PubMed ID: 15554944
    [Abstract] [Full Text] [Related]

  • 4. A new function of a previously isolated compound that stimulates activation and differentiation of myogenic precursor cells leading to efficient myofiber regeneration and muscle repair.
    Cheng L, Gu X, Sanderson JE, Wang X, Lee K, Yao X, Liu H, Cheung WL, Li M.
    Int J Biochem Cell Biol; 2006 Sep; 38(7):1123-33. PubMed ID: 16431151
    [Abstract] [Full Text] [Related]

  • 5. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age.
    Vasilaki A, McArdle F, Iwanejko LM, McArdle A.
    Mech Ageing Dev; 2006 Nov; 127(11):830-9. PubMed ID: 16996110
    [Abstract] [Full Text] [Related]

  • 6. Human muscle precursor cells give rise to functional satellite cells in vivo.
    Ehrhardt J, Brimah K, Adkin C, Partridge T, Morgan J.
    Neuromuscul Disord; 2007 Aug; 17(8):631-8. PubMed ID: 17588754
    [Abstract] [Full Text] [Related]

  • 7. Cdk9-55: a new player in muscle regeneration.
    Giacinti C, Musarò A, De Falco G, Jourdan I, Molinaro M, Bagella L, Simone C, Giordano A.
    J Cell Physiol; 2008 Sep; 216(3):576-82. PubMed ID: 18546201
    [Abstract] [Full Text] [Related]

  • 8. Mac-1(low) early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration.
    Ojima K, Uezumi A, Miyoshi H, Masuda S, Morita Y, Fukase A, Hattori A, Nakauchi H, Miyagoe-Suzuki Y, Takeda S.
    Biochem Biophys Res Commun; 2004 Sep 03; 321(4):1050-61. PubMed ID: 15358135
    [Abstract] [Full Text] [Related]

  • 9. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation.
    Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E.
    J Cell Sci; 2004 Jan 01; 117(Pt 1):73-84. PubMed ID: 14627628
    [Abstract] [Full Text] [Related]

  • 10. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.
    Pavlath GK, Thaloor D, Rando TA, Cheong M, English AW, Zheng B.
    Dev Dyn; 1998 Aug 01; 212(4):495-508. PubMed ID: 9707323
    [Abstract] [Full Text] [Related]

  • 11. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M.
    J Cell Physiol; 2006 Dec 01; 209(3):866-73. PubMed ID: 16972257
    [Abstract] [Full Text] [Related]

  • 12. The regeneration process of the striated urethral sphincter involves activation of intrinsic satellite cells.
    Yiou R, Lefaucheur JP, Atala A.
    Anat Embryol (Berl); 2003 May 01; 206(6):429-35. PubMed ID: 12728313
    [Abstract] [Full Text] [Related]

  • 13. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle.
    Ohtake Y, Tojo H, Seiki M.
    J Cell Sci; 2006 Sep 15; 119(Pt 18):3822-32. PubMed ID: 16926191
    [Abstract] [Full Text] [Related]

  • 14. Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration.
    Duguez S, Bihan MC, Gouttefangeas D, Féasson L, Freyssenet D.
    Am J Physiol Endocrinol Metab; 2003 Jul 15; 285(1):E206-15. PubMed ID: 12791605
    [Abstract] [Full Text] [Related]

  • 15. Strong induction of the Tis11B gene in myogenic differentiation.
    Busse M, Schwarzburger M, Berger F, Hacker C, Munz B.
    Eur J Cell Biol; 2008 Jan 15; 87(1):31-8. PubMed ID: 17889962
    [Abstract] [Full Text] [Related]

  • 16. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis.
    O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK.
    J Cell Sci; 2007 Jan 01; 120(Pt 1):149-59. PubMed ID: 17164296
    [Abstract] [Full Text] [Related]

  • 17. Cells that participate in regeneration of skeletal muscle.
    Partridge TA.
    Gene Ther; 2002 Jun 01; 9(11):752-3. PubMed ID: 12032703
    [Abstract] [Full Text] [Related]

  • 18. Activation of hypoxia-inducible factor 1 in skeletal muscle cells after exposure to damaged muscle cell debris.
    Dehne N, Kerkweg U, Flohé SB, Brüne B, Fandrey J.
    Shock; 2011 Jun 01; 35(6):632-8. PubMed ID: 21283061
    [Abstract] [Full Text] [Related]

  • 19. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.
    Pietrangelo T, Puglielli C, Mancinelli R, Beccafico S, Fanò G, Fulle S.
    Exp Gerontol; 2009 Aug 01; 44(8):523-31. PubMed ID: 19457451
    [Abstract] [Full Text] [Related]

  • 20. Expression and localization of heat-shock proteins during skeletal muscle cell proliferation and differentiation and the impact of heat stress.
    Thakur SS, James JL, Cranna NJ, Chhen VL, Swiderski K, Ryall JG, Lynch GS.
    Cell Stress Chaperones; 2019 Jul 01; 24(4):749-761. PubMed ID: 31098840
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.