These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 16593762
1. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Offringa IA, Melchers LS, Regensburg-Tuink AJ, Costantino P, Schilperoort RA, Hooykaas PJ. Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6935-9. PubMed ID: 16593762 [Abstract] [Full Text] [Related]
7. Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P. Plasmid; 1985 Jan; 13(1):1-7. PubMed ID: 3991808 [Abstract] [Full Text] [Related]
8. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. Hong SB, Hwang I, Dessaux Y, Guyon P, Kim KS, Farrand SK. J Bacteriol; 1997 Aug; 179(15):4831-40. PubMed ID: 9244272 [Abstract] [Full Text] [Related]
9. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW. J Bacteriol; 1985 Oct; 164(1):33-44. PubMed ID: 4044524 [Abstract] [Full Text] [Related]
10. Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Spano L, Pomponi M, Costantino P, Van Slogteren GM, Tempé J. Plant Mol Biol; 1982 Dec; 1(4):291-300. PubMed ID: 24318035 [Abstract] [Full Text] [Related]
11. Multiple mutations in the transferred regions of the Agrobacterium rhizogenes root-inducing plasmids. Estramareix C, Ratet P, Boulanger F, Richaud F. Plasmid; 1986 May; 15(3):245-7. PubMed ID: 3012616 [Abstract] [Full Text] [Related]
12. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Bahramnejad B, Naji M, Bose R, Jha S. Biotechnol Adv; 2019 Nov 15; 37(7):107405. PubMed ID: 31185263 [Abstract] [Full Text] [Related]
13. Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D. Plant Mol Biol; 1988 Nov 15; 11(6):731-44. PubMed ID: 24272624 [Abstract] [Full Text] [Related]
14. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Visser RG, Jacobsen E, Witholt B, Feenstra WJ. Theor Appl Genet; 1989 Oct 15; 78(4):594-600. PubMed ID: 24225690 [Abstract] [Full Text] [Related]
15. A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes : Frequent co-transformation of two distinct T-DNAs. Simpson RB, Spielmann A, Margossian L, McKnight TD. Plant Mol Biol; 1986 Nov 15; 6(6):403-15. PubMed ID: 24307418 [Abstract] [Full Text] [Related]
16. A new vector derived from Agrobacterium rhizogenes plasmids: a micro-Ri plasmid and its use to construct a mini-Ri plasmid. Vilaine F, Casse-Delbart F. Gene; 1987 Nov 15; 55(1):105-14. PubMed ID: 3623102 [Abstract] [Full Text] [Related]
20. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid. Kiyokawa K, Yamamoto S, Sato Y, Momota N, Tanaka K, Moriguchi K, Suzuki K. Genes Cells; 2012 Jul 15; 17(7):597-610. PubMed ID: 22686249 [Abstract] [Full Text] [Related] Page: [Next] [New Search]