These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


441 related items for PubMed ID: 16597729

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks.
    Nakajo K, Kubo Y.
    J Physiol; 2008 Jun 15; 586(12):2827-40. PubMed ID: 18440995
    [Abstract] [Full Text] [Related]

  • 3. A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
    Schwake M, Jentsch TJ, Friedrich T.
    EMBO Rep; 2003 Jan 15; 4(1):76-81. PubMed ID: 12524525
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.
    Schuetz F, Kumar S, Poronnik P, Adams DJ.
    Am J Physiol Cell Physiol; 2008 Jul 15; 295(1):C73-80. PubMed ID: 18463232
    [Abstract] [Full Text] [Related]

  • 6. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.
    Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grötzinger J, Schwake M.
    J Neurosci; 2005 May 18; 25(20):5051-60. PubMed ID: 15901787
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking.
    Choveau FS, Zhang J, Bierbower SM, Sharma R, Shapiro MS.
    PLoS One; 2015 May 18; 10(12):e0145367. PubMed ID: 26692086
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
    Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H.
    J Physiol; 2003 Apr 15; 548(Pt 2):353-60. PubMed ID: 12640002
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation.
    Etxeberria A, Santana-Castro I, Regalado MP, Aivar P, Villarroel A.
    J Neurosci; 2004 Oct 13; 24(41):9146-52. PubMed ID: 15483133
    [Abstract] [Full Text] [Related]

  • 16. Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels.
    Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA.
    Br J Pharmacol; 2000 Feb 13; 129(3):413-5. PubMed ID: 10711337
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.