These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
276 related items for PubMed ID: 1659905
1. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system. Fujii H, Kakinuma K. Biochim Biophys Acta; 1991 Nov 12; 1095(3):201-9. PubMed ID: 1659905 [Abstract] [Full Text] [Related]
2. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity. Miki T, Yoshida LS, Kakinuma K. J Biol Chem; 1992 Sep 15; 267(26):18695-701. PubMed ID: 1326533 [Abstract] [Full Text] [Related]
6. Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (-247 mV) cytochrome b. Berton G, Papini E, Cassatella MA, Bellavite P, Rossi F. Biochim Biophys Acta; 1985 Nov 27; 810(2):164-73. PubMed ID: 4063352 [Abstract] [Full Text] [Related]
10. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G. Biochem J; 1992 Jun 15; 284 ( Pt 3)(Pt 3):781-8. PubMed ID: 1320378 [Abstract] [Full Text] [Related]
11. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Doussière J, Vignais PV. Eur J Biochem; 1992 Aug 15; 208(1):61-71. PubMed ID: 1324836 [Abstract] [Full Text] [Related]
12. Composition of partially purified NADPH oxidase from pig neutrophils. Bellavite P, Jones OT, Cross AR, Papini E, Rossi F. Biochem J; 1984 Nov 01; 223(3):639-48. PubMed ID: 6439185 [Abstract] [Full Text] [Related]
13. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes. Puntarulo S, Cederbaum AI. Biochim Biophys Acta; 1991 May 24; 1074(1):12-8. PubMed ID: 1904277 [Abstract] [Full Text] [Related]
17. Oxidation-reduction states of FMN and FAD in NADPH-cytochrome P-450 reductase during reduction by NADPH. Oprian DD, Coon MJ. J Biol Chem; 1982 Aug 10; 257(15):8935-44. PubMed ID: 6807985 [Abstract] [Full Text] [Related]
18. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes. Sakane F, Takahashi K, Koyama J. J Biochem; 1984 Sep 10; 96(3):671-8. PubMed ID: 6094521 [Abstract] [Full Text] [Related]
19. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction. Hodgson AV, Strobel HW. Anal Biochem; 1996 Dec 01; 243(1):154-7. PubMed ID: 8954538 [Abstract] [Full Text] [Related]
20. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Bonants PJ, Müller F, Vervoort J, Edmondson DE. Eur J Biochem; 1990 Jul 05; 190(3):531-7. PubMed ID: 2115440 [Abstract] [Full Text] [Related] Page: [Next] [New Search]