These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


478 related items for PubMed ID: 16599711

  • 1. Kinetic theory of binary nucleation based on a first passage time analysis.
    Djikaev Y, Ruckenstein E.
    J Chem Phys; 2006 Mar 28; 124(12):124521. PubMed ID: 16599711
    [Abstract] [Full Text] [Related]

  • 2. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E, Djikaev YS.
    Adv Colloid Interface Sci; 2005 Dec 30; 118(1-3):51-72. PubMed ID: 16137628
    [Abstract] [Full Text] [Related]

  • 3. Kinetic theory of nucleation based on a first passage time analysis: improvement by the density-functional theory.
    Djikaev YS, Ruckenstein E.
    J Chem Phys; 2005 Dec 01; 123(21):214503. PubMed ID: 16356053
    [Abstract] [Full Text] [Related]

  • 4. New approach to the kinetics of heterogeneous unary nucleation on liquid aerosols of a binary solution.
    Djikaev Y, Ruckenstein E.
    J Chem Phys; 2006 Dec 28; 125(24):244707. PubMed ID: 17199368
    [Abstract] [Full Text] [Related]

  • 5. A novel approach to the theory of homogeneous and heterogeneous nucleation.
    Ruckenstein E, Berim GO, Narsimhan G.
    Adv Colloid Interface Sci; 2015 Jan 28; 215():13-27. PubMed ID: 25498347
    [Abstract] [Full Text] [Related]

  • 6. On the closure conjectures for the Gibbsian approximation model of a binary droplet.
    Djikaev YS, Napari I, Laaksonen A.
    J Chem Phys; 2004 May 22; 120(20):9752-62. PubMed ID: 15267991
    [Abstract] [Full Text] [Related]

  • 7. A kinetic approach to the theory of heterogeneous nucleation on soluble particles during the deliquescence stage.
    Djikaev YS, Ruckenstein E.
    J Chem Phys; 2006 May 21; 124(19):194709. PubMed ID: 16729836
    [Abstract] [Full Text] [Related]

  • 8. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN, Krasnoperov LN.
    J Chem Phys; 2007 Apr 14; 126(14):144504. PubMed ID: 17444720
    [Abstract] [Full Text] [Related]

  • 9. Mean-field kinetic nucleation theory.
    Kalikmanov VI.
    J Chem Phys; 2006 Mar 28; 124(12):124505. PubMed ID: 16599695
    [Abstract] [Full Text] [Related]

  • 10. Quasi-unary homogeneous nucleation of H2SO4-H2O.
    Yu F.
    J Chem Phys; 2005 Feb 15; 122(7):074501. PubMed ID: 15743248
    [Abstract] [Full Text] [Related]

  • 11. A thermodynamically consistent kinetic framework for binary nucleation.
    Flagan RC.
    J Chem Phys; 2007 Dec 07; 127(21):214503. PubMed ID: 18067360
    [Abstract] [Full Text] [Related]

  • 12. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J, Labetski DG, van Dongen ME.
    J Chem Phys; 2007 Oct 28; 127(16):164720. PubMed ID: 17979384
    [Abstract] [Full Text] [Related]

  • 13. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK, Kawamura K, Tanaka H, Nakazawa K.
    J Chem Phys; 2005 May 08; 122(18):184514. PubMed ID: 15918736
    [Abstract] [Full Text] [Related]

  • 14. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS, Ruckenstein E.
    Phys Chem Chem Phys; 2008 Nov 07; 10(41):6281-300. PubMed ID: 18936853
    [Abstract] [Full Text] [Related]

  • 15. Monte Carlo simulation study of droplet nucleation.
    Neimark AV, Vishnyakov A.
    J Chem Phys; 2005 May 01; 122(17):174508. PubMed ID: 15910046
    [Abstract] [Full Text] [Related]

  • 16. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A, Zapadinsky E, Vehkamäki H, Kulmala M.
    J Chem Phys; 2006 Oct 28; 125(16):164712. PubMed ID: 17092125
    [Abstract] [Full Text] [Related]

  • 17. Estimation of line tension and contact angle from heterogeneous nucleation experimental data.
    Hienola AI, Winkler PM, Wagner PE, Vehkamäki H, Lauri A, Napari I, Kulmala M.
    J Chem Phys; 2007 Mar 07; 126(9):094705. PubMed ID: 17362116
    [Abstract] [Full Text] [Related]

  • 18. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B, Kim H, Keasler SJ, Nellas RB.
    J Phys Chem B; 2008 Apr 03; 112(13):4067-78. PubMed ID: 18335920
    [Abstract] [Full Text] [Related]

  • 19. Model for the nucleation mechanism of protein folding.
    Djikaev YS, Ruckenstein E.
    J Phys Chem B; 2007 Feb 01; 111(4):886-97. PubMed ID: 17249833
    [Abstract] [Full Text] [Related]

  • 20. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory.
    Julin J, Napari I, Merikanto J, Vehkamäki H.
    J Chem Phys; 2010 Jul 28; 133(4):044704. PubMed ID: 20687673
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.