These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 16600270

  • 1. Determination of cyanide in microliter samples by capillary electrophoresis and in-capillary enzymatic reaction with rhodanese.
    Papezová K, Glatz Z.
    J Chromatogr A; 2006 Jul 07; 1120(1-2):268-72. PubMed ID: 16600270
    [Abstract] [Full Text] [Related]

  • 2. Determination of rhodanese enzyme activity by capillary zone electrophoresis.
    Glatz Z, Bouchal P, Janiczek O, Mandl M, Cesková P.
    J Chromatogr A; 1999 Apr 09; 838(1-2):139-48. PubMed ID: 10327635
    [Abstract] [Full Text] [Related]

  • 3. Determination of the kinetic parameters of rhodanese by electrophoretically mediated microanalysis in a partially filled capillary.
    Nováková S, Glatz Z.
    Electrophoresis; 2002 Apr 09; 23(7-8):1063-9. PubMed ID: 11981853
    [Abstract] [Full Text] [Related]

  • 4. A partial exploration of the potential energy surfaces of SCN and HSCN: implications for the enzyme-mediated detoxification of cyanide.
    Zottola MA.
    J Mol Graph Model; 2009 Sep 09; 28(2):183-6. PubMed ID: 19625201
    [Abstract] [Full Text] [Related]

  • 5. The effect of sodium tetrathionate on cyanide conversion to thiocyanate by enzymatic and non-enzymatic mechanisms.
    Baskin SI, Kirby SD.
    J Appl Toxicol; 1990 Oct 09; 10(5):379-82. PubMed ID: 2254590
    [Abstract] [Full Text] [Related]

  • 6. High-sensitivity analysis of cyanide by capillary electrophoresis with fluorescence detection.
    Chinaka S, Tanaka S, Takayama N, Tsuji N, Takou S, Ueda K.
    Anal Sci; 2001 May 09; 17(5):649-52. PubMed ID: 11708148
    [Abstract] [Full Text] [Related]

  • 7. Rhodanese activity in different tissues of the ostrich.
    Eskandarzade N, Aminlari M, Golami S, Tavana M.
    Br Poult Sci; 2012 May 09; 53(2):270-3. PubMed ID: 22646793
    [Abstract] [Full Text] [Related]

  • 8. Determination of homocysteine in human plasma by micellar electrokinetic chromatography and in-capillary detection reaction with 2,2'-dipyridyl disulfide.
    Sevcíková P, Glatz Z, Tomandl J.
    J Chromatogr A; 2003 Mar 21; 990(1-2):197-204. PubMed ID: 12685598
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous derivatization and extraction of free cyanide in biological samples with home-made hollow fiber-protected headspace liquid-phase microextraction followed by capillary electrophoresis with UV detection.
    Meng L, Liu X, Wang B, Shen G, Wang Z, Guo M.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Nov 01; 877(29):3645-51. PubMed ID: 19773203
    [Abstract] [Full Text] [Related]

  • 10. Ligand displacement, headspace single-drop microextraction, and capillary electrophoresis for the determination of weak acid dissociable cyanide.
    Jermak S, Pranaityte B, Padarauskas A.
    J Chromatogr A; 2007 Apr 27; 1148(1):123-7. PubMed ID: 17382334
    [Abstract] [Full Text] [Related]

  • 11. Application of capillary zone electrophoresis to study the properties of rhodanese from Acidithiobacillus ferrooxidans.
    Bouchal P, Glatz Z, Janiczek O, Mandl M.
    Folia Microbiol (Praha); 2001 Apr 27; 46(5):385-9. PubMed ID: 11899469
    [Abstract] [Full Text] [Related]

  • 12. Protein kinase C modulation of rhodanese-catalyzed conversion of cyanide to thiocyanate.
    Maduh EU, Baskin SI.
    Res Commun Mol Pathol Pharmacol; 1994 Nov 27; 86(2):155-73. PubMed ID: 7881866
    [Abstract] [Full Text] [Related]

  • 13. Analysis of thiocyanate in biological fluids by capillary zone electrophoresis.
    Glatz Z, Nováková S, Sterbová H.
    J Chromatogr A; 2001 May 04; 916(1-2):273-7. PubMed ID: 11382301
    [Abstract] [Full Text] [Related]

  • 14. In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes.
    Leung P, Cannon EP, Petrikovics I, Hawkins A, Way JL.
    Toxicol Appl Pharmacol; 1991 Sep 01; 110(2):268-74. PubMed ID: 1891774
    [Abstract] [Full Text] [Related]

  • 15. Application of cyanide-metabolizing enzymes to environmental control; enzyme thermistor assay of cyanide using immobilized rhodanese and injectase.
    Mattiasson B, Mosbach K.
    Biotechnol Bioeng; 1977 Nov 01; 19(11):1643-51. PubMed ID: 922128
    [Abstract] [Full Text] [Related]

  • 16. Disulfides as cyanide antidotes: evidence for a new in vivo oxidative pathway for cyanide detoxification.
    Zottola MA, Beigel K, Soni SD, Lawrence R.
    Chem Res Toxicol; 2009 Dec 01; 22(12):1948-53. PubMed ID: 19891443
    [Abstract] [Full Text] [Related]

  • 17. Dimethyl trisulfide: A novel cyanide countermeasure.
    Rockwood GA, Thompson DE, Petrikovics I.
    Toxicol Ind Health; 2016 Dec 01; 32(12):2009-2016. PubMed ID: 26939832
    [Abstract] [Full Text] [Related]

  • 18. Headspace single-drop microextraction with in-drop derivatization and capillary electrophoretic determination for free cyanide analysis.
    Jermak S, Pranaityte B, Padarauskas A.
    Electrophoresis; 2006 Nov 01; 27(22):4538-44. PubMed ID: 17058310
    [Abstract] [Full Text] [Related]

  • 19. Immunohistochemical localization of rhodanese.
    Sylvester M, Sander C.
    Histochem J; 1990 Apr 01; 22(4):197-200. PubMed ID: 2387754
    [Abstract] [Full Text] [Related]

  • 20. Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese.
    Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P.
    J Mol Microbiol Biotechnol; 2008 Apr 01; 15(2-3):199-211. PubMed ID: 18685272
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.