These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


411 related items for PubMed ID: 16600466

  • 1. Tannic acid inhibits in vitro iron-dependent free radical formation.
    Andrade RG, Ginani JS, Lopes GK, Dutra F, Alonso A, Hermes-Lima M.
    Biochimie; 2006 Sep; 88(9):1287-96. PubMed ID: 16600466
    [Abstract] [Full Text] [Related]

  • 2. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals.
    Andrade RG, Dalvi LT, Silva JM, Lopes GK, Alonso A, Hermes-Lima M.
    Arch Biochem Biophys; 2005 May 01; 437(1):1-9. PubMed ID: 15820211
    [Abstract] [Full Text] [Related]

  • 3. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions.
    Lopes GK, Schulman HM, Hermes-Lima M.
    Biochim Biophys Acta; 1999 Oct 18; 1472(1-2):142-52. PubMed ID: 10572935
    [Abstract] [Full Text] [Related]

  • 4. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ, Lopes GK, Gomes CS, Oliveira RG, Alonso A, Hermes-Lima M.
    Biochim Biophys Acta; 2003 Mar 17; 1620(1-3):15-24. PubMed ID: 12595068
    [Abstract] [Full Text] [Related]

  • 5. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC, Aust AE.
    Arch Biochem Biophys; 1993 Feb 01; 300(2):544-50. PubMed ID: 8382025
    [Abstract] [Full Text] [Related]

  • 6. Dual mechanism of mangiferin protection against iron-induced damage to 2-deoxyribose and ascorbate oxidation.
    Pardo-Andreu GL, Delgado R, Núñez-Sellés AJ, Vercesi AE.
    Pharmacol Res; 2006 Mar 01; 53(3):253-60. PubMed ID: 16412661
    [Abstract] [Full Text] [Related]

  • 7. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S, Huling SG, Ko S.
    Chemosphere; 2010 Jan 01; 78(5):563-8. PubMed ID: 19959205
    [Abstract] [Full Text] [Related]

  • 8. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR, Krishnamurthy S.
    Indian J Biochem Biophys; 1993 Oct 01; 30(5):289-92. PubMed ID: 8144174
    [Abstract] [Full Text] [Related]

  • 9. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction.
    Hermes-Lima M, Santos NC, Yan J, Andrews M, Schulman HM, Ponka P.
    Biochim Biophys Acta; 1999 Feb 02; 1426(3):475-82. PubMed ID: 10076064
    [Abstract] [Full Text] [Related]

  • 10. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M, Bektaşoğlu B, Güçlü K, Apak R.
    Anal Chim Acta; 2008 Jun 02; 616(2):196-206. PubMed ID: 18482604
    [Abstract] [Full Text] [Related]

  • 11. Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water.
    De Laat J, Dao YH, El Najjar NH, Daou C.
    Water Res; 2011 Nov 01; 45(17):5654-64. PubMed ID: 21920579
    [Abstract] [Full Text] [Related]

  • 12. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L, Abe Y, Kanagawa K, Shoji T, Mashino T, Mochizuki M, Tanaka M, Miyata N.
    Anal Chim Acta; 2007 Sep 19; 599(2):315-9. PubMed ID: 17870296
    [Abstract] [Full Text] [Related]

  • 13. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate.
    Hermes-Lima M, Ponka P, Schulman HM.
    Biochim Biophys Acta; 2000 Oct 18; 1523(2-3):154-60. PubMed ID: 11042379
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J, Masumizu T.
    Chemosphere; 2004 Oct 18; 57(4):241-52. PubMed ID: 15312722
    [Abstract] [Full Text] [Related]

  • 15. Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid.
    Freinbichler W, Tipton KF, Corte LD, Linert W.
    J Inorg Biochem; 2009 Jan 18; 103(1):28-34. PubMed ID: 18848726
    [Abstract] [Full Text] [Related]

  • 16. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD, Davis TZ, Aust SD.
    Arch Biochem Biophys; 2002 Jan 15; 397(2):360-9. PubMed ID: 11795895
    [Abstract] [Full Text] [Related]

  • 17. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions.
    Mozdzan M, Szemraj J, Rysz J, Stolarek RA, Nowak D.
    Int J Biochem Cell Biol; 2006 Jan 15; 38(1):69-81. PubMed ID: 16107320
    [Abstract] [Full Text] [Related]

  • 18. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction.
    Ishikawa S, Yano Y, Arihara K, Itoh M.
    Biosci Biotechnol Biochem; 2004 Jun 15; 68(6):1324-31. PubMed ID: 15215598
    [Abstract] [Full Text] [Related]

  • 19. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA, Kobzeva TV, Polyakov NE, Kontoghiorghes GJ.
    Free Radic Biol Med; 2015 Jan 15; 78():118-22. PubMed ID: 25451643
    [Abstract] [Full Text] [Related]

  • 20. Ellagic acid inhibits iron-mediated free radical formation.
    Dalvi LT, Moreira DC, Andrade R, Ginani J, Alonso A, Hermes-Lima M.
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb 15; 173():910-917. PubMed ID: 27829207
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.