These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 16603683
1. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Zhou L, Cabrera ME, Okere IC, Sharma N, Stanley WC. Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683 [Abstract] [Full Text] [Related]
2. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC. J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335 [Abstract] [Full Text] [Related]
3. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 15; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
4. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME. J Physiol; 2005 Dec 15; 569(Pt 3):925-37. PubMed ID: 16223766 [Abstract] [Full Text] [Related]
5. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME. Am J Physiol Cell Physiol; 2009 Jan 15; 296(1):C25-46. PubMed ID: 18829894 [Abstract] [Full Text] [Related]
6. Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Salem JE, Saidel GM, Stanley WC, Cabrera ME. Ann Biomed Eng; 2002 Feb 15; 30(2):202-16. PubMed ID: 11962772 [Abstract] [Full Text] [Related]
7. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+? Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE. J Mol Cell Cardiol; 1995 Aug 15; 27(8):1581-91. PubMed ID: 8523421 [Abstract] [Full Text] [Related]
8. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Cabrera ME, Saidel GM, Kalhan SC. Ann Biomed Eng; 1998 Aug 15; 26(1):1-27. PubMed ID: 10355547 [Abstract] [Full Text] [Related]
9. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. Sharma N, Okere IC, Brunengraber DZ, McElfresh TA, King KL, Sterk JP, Huang H, Chandler MP, Stanley WC. J Physiol; 2005 Jan 15; 562(Pt 2):593-603. PubMed ID: 15550462 [Abstract] [Full Text] [Related]
10. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption. van Beek JH, Tian X, Zuurbier CJ, de Groot B, van Echteld CJ, Eijgelshoven MH, Hak JB. Mol Cell Biochem; 1998 Jul 15; 184(1-2):321-44. PubMed ID: 9746328 [Abstract] [Full Text] [Related]
11. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME. Am J Physiol Heart Circ Physiol; 2005 May 15; 288(5):H2400-11. PubMed ID: 15681693 [Abstract] [Full Text] [Related]
12. A simulation study on the constancy of cardiac energy metabolites during workload transition. Saito R, Takeuchi A, Himeno Y, Inagaki N, Matsuoka S. J Physiol; 2016 Dec 01; 594(23):6929-6945. PubMed ID: 27530892 [Abstract] [Full Text] [Related]
13. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. Territo PR, French SA, Balaban RS. Cell Calcium; 2001 Jul 01; 30(1):19-27. PubMed ID: 11396984 [Abstract] [Full Text] [Related]
14. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload. O'Donnell JM, Kudej RK, LaNoue KF, Vatner SF, Lewandowski ED. Am J Physiol Heart Circ Physiol; 2004 Jun 01; 286(6):H2237-42. PubMed ID: 14751856 [Abstract] [Full Text] [Related]
15. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle. Schwartz GG, Greyson CR, Wisneski JA, Garcia J, Steinman S. Am J Physiol; 1994 Feb 01; 266(2 Pt 2):H521-30. PubMed ID: 8141353 [Abstract] [Full Text] [Related]
16. Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models. Zhou L, Yu X, Cabrera ME, Stanley WC. Ann N Y Acad Sci; 2006 Oct 01; 1080():120-39. PubMed ID: 17132780 [Abstract] [Full Text] [Related]
17. Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells. White RL, Wittenberg BA. Am J Physiol Heart Circ Physiol; 2000 Oct 01; 279(4):H1849-57. PubMed ID: 11009472 [Abstract] [Full Text] [Related]
18. Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure. Richards JG, Sardella BA, Schulte PM. Am J Physiol Regul Integr Comp Physiol; 2008 Sep 01; 295(3):R979-90. PubMed ID: 18579651 [Abstract] [Full Text] [Related]
19. Lactate metabolism during exercise: analysis by an integrative systems model. Cabrera ME, Saidel GM, Kalhan SC. Am J Physiol; 1999 Nov 01; 277(5):R1522-36. PubMed ID: 10564227 [Abstract] [Full Text] [Related]
20. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS, Davis EJ. Arch Biochem Biophys; 1983 Apr 01; 222(1):179-91. PubMed ID: 6220674 [Abstract] [Full Text] [Related] Page: [Next] [New Search]