These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 16603683

  • 61. Protective effect of urinary trypsin inhibitor on myocardial mitochondria during hemorrhagic shock and reperfusion.
    Masuda T, Sato K, Noda C, Ikeda KM, Matsunaga A, Ogura MN, Shimizu K, Nagasawa H, Matsuyama N, Izumi T.
    Crit Care Med; 2003 Jul; 31(7):1987-92. PubMed ID: 12847393
    [Abstract] [Full Text] [Related]

  • 62. Dichloroacetate enhanced myocardial functional recovery post-ischemia : ATP and NADH recovery.
    Wahr JA, Olszanski D, Childs KF, Bolling SF.
    J Surg Res; 1996 Jun; 63(1):220-4. PubMed ID: 8661201
    [Abstract] [Full Text] [Related]

  • 63. Oxygen consumption and metabolite concentrations during transitions between different work intensities in heart.
    Korzeniewski B.
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1466-74. PubMed ID: 16679405
    [Abstract] [Full Text] [Related]

  • 64. Sepsis-induced failure of hepatic energy metabolism.
    Hart DW, Gore DC, Rinehart AJ, Asimakis GK, Chinkes DL.
    J Surg Res; 2003 Nov; 115(1):139-47. PubMed ID: 14572785
    [Abstract] [Full Text] [Related]

  • 65. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F.
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [Abstract] [Full Text] [Related]

  • 66. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF.
    Am J Physiol Endocrinol Metab; 2016 Apr 15; 310(8):E633-E642. PubMed ID: 26837809
    [Abstract] [Full Text] [Related]

  • 67. Myocardial metabolism and heart disease.
    Opie LH.
    Jpn Circ J; 1978 Nov 15; 42(11):1223-47. PubMed ID: 34741
    [Abstract] [Full Text] [Related]

  • 68. Heart failure: is there an energy deficit contributing to contractile dysfunction?
    Vogt AM, Kübler W.
    Basic Res Cardiol; 1998 Feb 15; 93(1):1-10. PubMed ID: 9538931
    [Abstract] [Full Text] [Related]

  • 69. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver.
    Soboll S, Scholz R, Heldt HW.
    Eur J Biochem; 1978 Jun 15; 87(2):377-90. PubMed ID: 668699
    [Abstract] [Full Text] [Related]

  • 70. Impaired energy metabolism of the taurine‑deficient heart.
    Schaffer SW, Shimada-Takaura K, Jong CJ, Ito T, Takahashi K.
    Amino Acids; 2016 Feb 15; 48(2):549-58. PubMed ID: 26475290
    [Abstract] [Full Text] [Related]

  • 71. Relation between myocardial substrate utilization, oxygen consumption and regional oxygen balance in the dog heart in vivo.
    Furman E, Sonn J, Acad BA, Dvir S, Kedem J.
    Arch Int Physiol Biochim; 1986 Dec 15; 94(5):285-93. PubMed ID: 2440404
    [Abstract] [Full Text] [Related]

  • 72. Direct action of T3 on phosphorylation potential in the sheep heart in vivo.
    Portman MA, Qian K, Krueger J, Ning XH.
    Am J Physiol Heart Circ Physiol; 2005 May 15; 288(5):H2484-90. PubMed ID: 15637117
    [Abstract] [Full Text] [Related]

  • 73. Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture.
    Kelly RA, Leedale J, Harrell A, Beard DA, Randle LE, Chadwick AE, Webb SD.
    PLoS One; 2018 May 15; 13(11):e0207803. PubMed ID: 30496306
    [Abstract] [Full Text] [Related]

  • 74. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT, Manjeri GR, Rodenburg RJ, Smeitink JA, Notebaart RA, Huynen M, Willems PH, Koopman WJ.
    Biochim Biophys Acta; 2015 May 15; 1847(6-7):526-33. PubMed ID: 25687896
    [Abstract] [Full Text] [Related]

  • 75. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes.
    Sibille B, Keriel C, Fontaine E, Catelloni F, Rigoulet M, Leverve XM.
    Eur J Biochem; 1995 Jul 15; 231(2):498-502. PubMed ID: 7635161
    [Abstract] [Full Text] [Related]

  • 76. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG.
    Biochem J; 1975 Mar 15; 146(3):537-47. PubMed ID: 167720
    [Abstract] [Full Text] [Related]

  • 77. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK, Brand MD.
    Eur J Biochem; 1999 Aug 15; 263(3):671-85. PubMed ID: 10469130
    [Abstract] [Full Text] [Related]

  • 78. Mitochondrial matrix Ca²⁺ accumulation regulates cytosolic NAD⁺/NADH metabolism, protein acetylation, and sirtuin expression.
    Marcu R, Wiczer BM, Neeley CK, Hawkins BJ.
    Mol Cell Biol; 2014 Aug 15; 34(15):2890-902. PubMed ID: 24865966
    [Abstract] [Full Text] [Related]

  • 79. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B.
    Biochem J; 1998 Mar 15; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [Abstract] [Full Text] [Related]

  • 80. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B.
    Biochem J; 2003 Nov 01; 375(Pt 3):799-804. PubMed ID: 12901719
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.