These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
367 related items for PubMed ID: 16605480
1. Lattice Boltzmann method for incompressible flows with large pressure gradients. Shi Y, Zhao TS, Guo ZL. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026704. PubMed ID: 16605480 [Abstract] [Full Text] [Related]
2. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit. Shi Y, Zhao TS, Guo ZL. Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505 [Abstract] [Full Text] [Related]
3. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations. Yang X, Shi B, Chai Z. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412 [Abstract] [Full Text] [Related]
4. Lattice Boltzmann model for incompressible flows through porous media. Guo Z, Zhao TS. Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250 [Abstract] [Full Text] [Related]
5. Three-dimensional lattice Boltzmann model for compressible flows. Sun C, Hsu AT. Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242 [Abstract] [Full Text] [Related]
6. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates. Hejranfar K, Saadat MH, Taheri S. Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984 [Abstract] [Full Text] [Related]
7. Filter-matrix lattice Boltzmann model for incompressible thermal flows. Zhuo C, Zhong C, Cao J. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046703. PubMed ID: 22680602 [Abstract] [Full Text] [Related]
8. Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability. Asinari P, Karlin IV. Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016702. PubMed ID: 20365497 [Abstract] [Full Text] [Related]
9. Stabilized lattice Boltzmann-Enskog method for compressible flows and its application to one- and two-component fluids in nanochannels. Melchionna S, Marini Bettolo Marconi U. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036707. PubMed ID: 22587209 [Abstract] [Full Text] [Related]
10. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Luo LS, Liao W, Chen X, Peng Y, Zhang W. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696 [Abstract] [Full Text] [Related]
11. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers. Feuchter C, Schleifenbaum W. Phys Rev E; 2016 Jul; 94(1-1):013304. PubMed ID: 27575233 [Abstract] [Full Text] [Related]
12. Lattice Boltzmann method for linear oscillatory noncontinuum flows. Shi Y, Yap YW, Sader JE. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033305. PubMed ID: 24730965 [Abstract] [Full Text] [Related]
14. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method. Shirsat AU, Nayak SG, Patil DV. Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898 [Abstract] [Full Text] [Related]
15. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability. Verschaeve JC. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036703. PubMed ID: 19905242 [Abstract] [Full Text] [Related]
16. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case. Guo Z, Xu K, Wang R. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383 [Abstract] [Full Text] [Related]
17. Lattice Boltzmann scheme for crystal growth in external flows. Medvedev D, Kassner K. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056703. PubMed ID: 16383781 [Abstract] [Full Text] [Related]