These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 16609706

  • 1. Differential abilities of mouse liver parenchymal and nonparenchymal cells in HDL and LDL (native and oxidized) association and cholesterol efflux.
    Lapointe J, Truong TQ, Falstrault L, Brissette L.
    Biochem Cell Biol; 2006 Apr; 84(2):250-6. PubMed ID: 16609706
    [Abstract] [Full Text] [Related]

  • 2. In vivo cholesteryl ester selective uptake of mildly and standardly oxidized LDL occurs by both parenchymal and nonparenchymal mouse hepatic cells but SR-BI is only responsible for standardly oxidized LDL selective uptake by nonparenchymal cells.
    Bourret G, Brodeur MR, Luangrath V, Lapointe J, Falstrault L, Brissette L.
    Int J Biochem Cell Biol; 2006 Apr; 38(7):1160-70. PubMed ID: 16427800
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Scavenger receptor B1 (SR-B1) substrates inhibit the selective uptake of high-density-lipoprotein cholesteryl esters by rat parenchymal liver cells.
    Fluiter K, van Berkel TJ.
    Biochem J; 1997 Sep 01; 326 ( Pt 2)(Pt 2):515-9. PubMed ID: 9291126
    [Abstract] [Full Text] [Related]

  • 8. Mouse CD36 has opposite effects on LDL and oxidized LDL metabolism in vivo.
    Luangrath V, Brodeur MR, Rhainds D, Brissette L.
    Arterioscler Thromb Vasc Biol; 2008 Jul 01; 28(7):1290-5. PubMed ID: 18436808
    [Abstract] [Full Text] [Related]

  • 9. Lipid transfer protein I facilitated transfer of cyclosporine from low- to high-density lipoproteins is only partially dependent on its cholesteryl ester transfer activity.
    Wasan KM, Ramaswamy M, Wong W, Pritchard PH.
    J Pharmacol Exp Ther; 1998 Feb 01; 284(2):599-605. PubMed ID: 9454803
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Cholesteryl esters from oxidized low-density lipoproteins are in vivo rapidly hydrolyzed in rat Kupffer cells and transported to liver parenchymal cells and bile.
    Pieters MN, Esbach S, Schouten D, Brouwer A, Knook DL, Van Berkel TJ.
    Hepatology; 1994 Jun 01; 19(6):1459-67. PubMed ID: 8188177
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells.
    Jiang P, Yan PK, Chen JX, Zhu BY, Lei XY, Yin WD, Liao DF.
    Acta Pharmacol Sin; 2006 Feb 01; 27(2):151-7. PubMed ID: 16412263
    [Abstract] [Full Text] [Related]

  • 19. Opposite effect of caveolin-1 in the metabolism of high-density and low-density lipoproteins.
    Truong TQ, Aubin D, Bourgeois P, Falstrault L, Brissette L.
    Biochim Biophys Acta; 2006 Jan 01; 1761(1):24-36. PubMed ID: 16443388
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.