These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 16609707

  • 1. Conservation of Pitx1 expression during amphibian limb morphogenesis.
    Chang WY, Khosrowshahian F, Wolanski M, Marshall R, McCormick W, Perry S, Crawford MJ.
    Biochem Cell Biol; 2006 Apr; 84(2):257-62. PubMed ID: 16609707
    [Abstract] [Full Text] [Related]

  • 2. Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui.
    Kerney R, Hanken J.
    Evol Dev; 2008 Apr; 10(4):439-48. PubMed ID: 18638321
    [Abstract] [Full Text] [Related]

  • 3. Expression of Xenopus XlSALL4 during limb development and regeneration.
    Neff AW, King MW, Harty MW, Nguyen T, Calley J, Smith RC, Mescher AL.
    Dev Dyn; 2005 Jun; 233(2):356-67. PubMed ID: 15844096
    [Abstract] [Full Text] [Related]

  • 4. Characterization of Xenopus digits and regenerated limbs of the froglet.
    Satoh A, Endo T, Abe M, Yakushiji N, Ohgo S, Tamura K, Ide H.
    Dev Dyn; 2006 Dec; 235(12):3316-26. PubMed ID: 17075873
    [Abstract] [Full Text] [Related]

  • 5. Effects of activation of hedgehog signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration.
    Yakushiji N, Suzuki M, Satoh A, Ide H, Tamura K.
    Dev Dyn; 2009 Aug; 238(8):1887-96. PubMed ID: 19544583
    [Abstract] [Full Text] [Related]

  • 6. Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui.
    Nath K, Boorech JL, Beckham YM, Burns MM, Elinson RP.
    J Exp Zool B Mol Dev Evol; 2005 Jan 15; 304(1):28-39. PubMed ID: 15515051
    [Abstract] [Full Text] [Related]

  • 7. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes.
    Mitsiadis TA, Drouin J.
    Dev Biol; 2008 Jan 15; 313(2):887-96. PubMed ID: 18082678
    [Abstract] [Full Text] [Related]

  • 8. Patterns of distal-less gene expression and inductive interactions in the head of the direct developing frog Eleutherodactylus coqui.
    Fang H, Elinson RP.
    Dev Biol; 1996 Oct 10; 179(1):160-72. PubMed ID: 8873761
    [Abstract] [Full Text] [Related]

  • 9. Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression.
    Kerney R, Gross JB, Hanken J.
    Evol Dev; 2010 Oct 10; 12(4):373-82. PubMed ID: 20618433
    [Abstract] [Full Text] [Related]

  • 10. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds.
    Takeuchi JK, Koshiba-Takeuchi K, Matsumoto K, Vogel-Höpker A, Naitoh-Matsuo M, Ogura K, Takahashi N, Yasuda K, Ogura T.
    Nature; 1999 Apr 29; 398(6730):810-4. PubMed ID: 10235263
    [Abstract] [Full Text] [Related]

  • 11. Leg development in a frog without a tadpole (Eleutherodactylus coqui).
    Elinson RP.
    J Exp Zool; 1994 Oct 01; 270(2):202-10. PubMed ID: 7964555
    [Abstract] [Full Text] [Related]

  • 12. Anteroposterior axis formation in Xenopus limb bud recombinants: a model of pattern formation during limb regeneration.
    Yokoyama H, Tamura K, Ide H.
    Dev Dyn; 2002 Nov 01; 225(3):277-88. PubMed ID: 12412010
    [Abstract] [Full Text] [Related]

  • 13. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration.
    Grow M, Neff AW, Mescher AL, King MW.
    Dev Dyn; 2006 Oct 01; 235(10):2667-85. PubMed ID: 16871633
    [Abstract] [Full Text] [Related]

  • 14. Ultrastructural comparison between regenerating and developing hindlimbs of Xenopus laevis tadpoles.
    Khan PA, Liversage RA.
    Growth Dev Aging; 1990 Oct 01; 54(4):173-81. PubMed ID: 2092016
    [Abstract] [Full Text] [Related]

  • 15. Level-specific role of paraxial mesoderm in regulation of Tbx5/Tbx4 expression and limb initiation.
    Saito D, Yonei-Tamura S, Takahashi Y, Tamura K.
    Dev Biol; 2006 Apr 01; 292(1):79-89. PubMed ID: 16480709
    [Abstract] [Full Text] [Related]

  • 16. Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis.
    Shimizu-Nishikawa K, Takahashi J, Nishikawa A.
    Dev Dyn; 2003 Aug 01; 227(4):563-72. PubMed ID: 12889065
    [Abstract] [Full Text] [Related]

  • 17. Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration.
    Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW.
    Mech Dev; 2015 Nov 01; 138 Pt 3():256-67. PubMed ID: 26527308
    [Abstract] [Full Text] [Related]

  • 18. Differential regulation of avian pelvic girdle development by the limb field ectoderm.
    Malashichev Y, Borkhvardt V, Christ B, Scaal M.
    Anat Embryol (Berl); 2005 Oct 01; 210(3):187-97. PubMed ID: 16170541
    [Abstract] [Full Text] [Related]

  • 19. LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis.
    Moreno N, Bachy I, Rétaux S, González A.
    J Comp Neurol; 2005 May 09; 485(3):240-54. PubMed ID: 15791640
    [Abstract] [Full Text] [Related]

  • 20. Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing.
    Carinato ME, Walter BE, Henry JJ.
    Dev Dyn; 2000 Apr 09; 217(4):377-87. PubMed ID: 10767082
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.