These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
69 related items for PubMed ID: 16610948
1. Gene expression profile of empirically delineated classes of unexplained chronic fatigue. Carmel L, Efroni S, White PD, Aslakson E, Vollmer-Conna U, Rajeevan MS. Pharmacogenomics; 2006 Apr; 7(3):375-86. PubMed ID: 16610948 [Abstract] [Full Text] [Related]
2. Polymorphisms in genes regulating the HPA axis associated with empirically delineated classes of unexplained chronic fatigue. Smith AK, White PD, Aslakson E, Vollmer-Conna U, Rajeevan MS. Pharmacogenomics; 2006 Apr; 7(3):387-94. PubMed ID: 16610949 [Abstract] [Full Text] [Related]
3. The validity of an empirical delineation of heterogeneity in chronic unexplained fatigue. Aslakson E, Vollmer-Conna U, White PD. Pharmacogenomics; 2006 Apr; 7(3):365-73. PubMed ID: 16610947 [Abstract] [Full Text] [Related]
7. Gene expression correlates of unexplained fatigue. Whistler T, Taylor R, Craddock RC, Broderick G, Klimas N, Unger ER. Pharmacogenomics; 2006 Apr; 7(3):395-405. PubMed ID: 16610950 [Abstract] [Full Text] [Related]
8. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome. Gurbaxani BM, Jones JF, Goertzel BN, Maloney EM. Pharmacogenomics; 2006 Apr; 7(3):455-65. PubMed ID: 16610955 [Abstract] [Full Text] [Related]
9. Identifying illness parameters in fatiguing syndromes using classical projection methods. Broderick G, Craddock RC, Whistler T, Taylor R, Klimas N, Unger ER. Pharmacogenomics; 2006 Apr; 7(3):407-19. PubMed ID: 16610951 [Abstract] [Full Text] [Related]
10. The challenge of integrating disparate high-content data: epidemiological, clinical and laboratory data collected during an in-hospital study of chronic fatigue syndrome. Vernon SD, Reeves WC. Pharmacogenomics; 2006 Apr; 7(3):345-54. PubMed ID: 16610945 [Abstract] [Full Text] [Related]
11. Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. Kerr JR, Burke B, Petty R, Gough J, Fear D, Mattey DL, Axford JS, Dalgleish AG, Nutt DJ. J Clin Pathol; 2008 Jun; 61(6):730-9. PubMed ID: 18057078 [Abstract] [Full Text] [Related]
12. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. McLachlan GJ, Bean RW, Jones LB. Bioinformatics; 2006 Jul 01; 22(13):1608-15. PubMed ID: 16632494 [Abstract] [Full Text] [Related]
16. [Identification and application of marker genes for differential diagnosis of chronic fatigue syndrome]. Kawai T, Rokutan K. Nihon Rinsho; 2007 Jun 01; 65(6):1029-33. PubMed ID: 17561693 [Abstract] [Full Text] [Related]
17. Graph-based consensus clustering for class discovery from gene expression data. Yu Z, Wong HS, Wang H. Bioinformatics; 2007 Nov 01; 23(21):2888-96. PubMed ID: 17872912 [Abstract] [Full Text] [Related]
19. New gene selection method for multiclass tumor classification by class centroid. Shen Q, Shi WM, Kong W. J Biomed Inform; 2009 Feb 01; 42(1):59-65. PubMed ID: 18835752 [Abstract] [Full Text] [Related]
20. Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. Anand A, Suganthan PN. J Theor Biol; 2009 Aug 07; 259(3):533-40. PubMed ID: 19406131 [Abstract] [Full Text] [Related] Page: [Next] [New Search]