These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 16615146

  • 41. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.
    van Zyl WH, Lynd LR, den Haan R, McBride JE.
    Adv Biochem Eng Biotechnol; 2007; 108():205-35. PubMed ID: 17846725
    [Abstract] [Full Text] [Related]

  • 42. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
    Hjersted JL, Henson MA, Mahadevan R.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1190-204. PubMed ID: 17243146
    [Abstract] [Full Text] [Related]

  • 43. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states.
    Sanchez-Gonzalez Y, Cameleyre X, Molina-Jouve C, Goma G, Alfenore S.
    Bioprocess Biosyst Eng; 2009 Jun 01; 32(4):459-66. PubMed ID: 18923846
    [Abstract] [Full Text] [Related]

  • 44. beta-Galactosidase production by Kluyveromyces marxianus cultured in shake flasks.
    Topete M, Casas LT, Galindo E.
    Rev Latinoam Microbiol; 1997 Jun 01; 39(3-4):101-7. PubMed ID: 10932718
    [Abstract] [Full Text] [Related]

  • 45. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C, Marcet M, Almazán O, Jönsson LJ.
    Bioresour Technol; 2007 Jul 01; 98(9):1767-73. PubMed ID: 16934451
    [Abstract] [Full Text] [Related]

  • 46. Parameter estimation for simultaneous saccharification and fermentation of food waste into ethanol using Matlab Simulink.
    Davis RA.
    Appl Biochem Biotechnol; 2008 Mar 01; 147(1-3):11-21. PubMed ID: 18401750
    [Abstract] [Full Text] [Related]

  • 47. Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport.
    Riley MI, Sreekrishna K, Bhairi S, Dickson RC.
    Mol Gen Genet; 1987 Jun 01; 208(1-2):145-51. PubMed ID: 3039304
    [Abstract] [Full Text] [Related]

  • 48. Continuous ethanol fermentation of cheese whey powder solution: effects of hydraulic residence time.
    Ozmihci S, Kargi F.
    Bioprocess Biosyst Eng; 2007 Mar 01; 30(2):79-86. PubMed ID: 17143639
    [Abstract] [Full Text] [Related]

  • 49. Analytical monitoring of alcoholic fermentation using NIR spectroscopy.
    Blanco M, Peinado AC, Mas J.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):536-42. PubMed ID: 15470716
    [Abstract] [Full Text] [Related]

  • 50. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L.
    Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076
    [Abstract] [Full Text] [Related]

  • 51. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter.
    Kang HA, Kang WK, Go SM, Rezaee A, Krishna SH, Rhee SK, Kim JY.
    Biotechnol Bioeng; 2005 Mar 20; 89(6):619-29. PubMed ID: 15696522
    [Abstract] [Full Text] [Related]

  • 52. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production.
    Ghaly AE, Kamal M, Correia LR.
    Bioresour Technol; 2005 Jul 20; 96(10):1143-52. PubMed ID: 15683905
    [Abstract] [Full Text] [Related]

  • 53. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P, Vaisman D, Cintolesi A, Urrutia J, Rapaport I, Andrews BA, Asenjo JA.
    Biotechnol Bioeng; 2012 Sep 20; 109(9):2325-39. PubMed ID: 22447363
    [Abstract] [Full Text] [Related]

  • 54. Effect of aeration rate on the alcoholic fermentation of whey by Kluyveromyces fragilis.
    Varela H, Ferrari MD, Loperena L, Lareo C.
    Microbiologia; 1992 Apr 20; 8(1):14-20. PubMed ID: 1605917
    [Abstract] [Full Text] [Related]

  • 55. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.
    Yu KO, Kim SW, Han SO.
    J Biotechnol; 2010 Oct 15; 150(2):209-14. PubMed ID: 20854852
    [Abstract] [Full Text] [Related]

  • 56. Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor.
    Klein J, Maia J, Vicente AA, Domingues L, Teixeira JA, Jurascík M.
    Biotechnol Bioeng; 2005 Feb 20; 89(4):393-9. PubMed ID: 15635613
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C, Von Stockar U.
    Biotechnol Bioeng; 2003 Mar 30; 81(7):837-47. PubMed ID: 12557317
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.