These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 16620394
1. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. Jung HC, Kwon SJ, Pan JG. BMC Biotechnol; 2006 Apr 19; 6():23. PubMed ID: 16620394 [Abstract] [Full Text] [Related]
2. Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Lee SH, Lee SY, Park BC. Appl Environ Microbiol; 2005 Dec 19; 71(12):8581-6. PubMed ID: 16332850 [Abstract] [Full Text] [Related]
3. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Lima LN, Oliveira GC, Rojas MJ, Castro HF, Da Rós PC, Mendes AA, Giordano RL, Tardioli PW. J Ind Microbiol Biotechnol; 2015 Apr 19; 42(4):523-35. PubMed ID: 25626526 [Abstract] [Full Text] [Related]
4. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation. Sahoo RK, Subudhi E, Kumar M. Lett Appl Microbiol; 2014 Jun 19; 58(6):610-6. PubMed ID: 24527988 [Abstract] [Full Text] [Related]
5. Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability. Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z. Bioresour Technol; 2009 Nov 19; 100(21):5146-54. PubMed ID: 19540754 [Abstract] [Full Text] [Related]
6. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E. PLoS One; 2011 Nov 19; 6(8):e23325. PubMed ID: 21853111 [Abstract] [Full Text] [Related]
7. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Ismail AR, Kashtoh H, Baek KH. Int J Biol Macromol; 2021 Sep 30; 187():127-142. PubMed ID: 34298046 [Abstract] [Full Text] [Related]
8. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. Janardhan Garikipati SV, Peeples TL. J Biotechnol; 2015 Sep 20; 210():91-9. PubMed ID: 26143210 [Abstract] [Full Text] [Related]
9. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z. J Biomater Sci Polym Ed; 2013 Sep 20; 24(14):1618-35. PubMed ID: 23574345 [Abstract] [Full Text] [Related]
10. [Development of revolutionary enzymatic reactions in organic solvents with molecular display]. Ueda M. Yakugaku Zasshi; 2010 Nov 20; 130(11):1479-85. PubMed ID: 21048406 [Abstract] [Full Text] [Related]
11. Practical application of different enzymes immobilized on sepabeads. Hilterhaus L, Minow B, Müller J, Berheide M, Quitmann H, Katzer M, Thum O, Antranikian G, Zeng AP, Liese A. Bioprocess Biosyst Eng; 2008 Apr 20; 31(3):163-71. PubMed ID: 18239944 [Abstract] [Full Text] [Related]
12. Comparative study of performances of lipase immobilized asymmetric polysulfone and polyether sulfone membranes in olive oil hydrolysis. Gupta S, Yogesh, Javiya S, Bhambi M, Pundir CS, Singh K, Bhattacharya A. Int J Biol Macromol; 2008 Mar 01; 42(2):145-51. PubMed ID: 18068760 [Abstract] [Full Text] [Related]
13. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads. Gilani SL, Najafpour GD, Heydarzadeh HD, Moghadamnia A. Chirality; 2017 Jun 01; 29(6):304-314. PubMed ID: 28422452 [Abstract] [Full Text] [Related]
14. Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization. Hwang S, Ahn J, Lee S, Lee TG, Haam S, Lee K, Ahn IS, Jung JK. Biotechnol Lett; 2004 Apr 01; 26(7):603-5. PubMed ID: 15168862 [Abstract] [Full Text] [Related]
15. Kinetic modeling of solvent-free lipase-catalyzed partial hydrolysis of palm oil. Voll FA, Zanette AF, Cabral VF, Dariva C, Souza RO, Cardozo Filho L, Corazza ML. Appl Biochem Biotechnol; 2012 Nov 01; 168(5):1121-42. PubMed ID: 22968585 [Abstract] [Full Text] [Related]
16. Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production. Bencze LC, Bartha-Vári JH, Katona G, Toşa MI, Paizs C, Irimie FD. Bioresour Technol; 2016 Jan 01; 200():853-60. PubMed ID: 26590760 [Abstract] [Full Text] [Related]
17. Immobilized GDEst-95, GDEst-lip and GD-95RM lipolytic enzymes for continuous flow hydrolysis and transesterification reactions. Savickaite A, Sadauskas M, Gudiukaite R. Int J Biol Macromol; 2021 Mar 15; 173():421-434. PubMed ID: 33493559 [Abstract] [Full Text] [Related]
18. An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption. Trusek-Holownia A, Noworyta A. J Biotechnol; 2007 May 31; 130(1):47-56. PubMed ID: 17434222 [Abstract] [Full Text] [Related]
19. Hydrolysis of rice bran oil using an immobilized lipase from Candida rugosa in isooctane. Murty VR, Bhat J, Muniswaran PK. Biotechnol Lett; 2004 Apr 31; 26(7):563-7. PubMed ID: 15168855 [Abstract] [Full Text] [Related]
20. A thermostable and organic-solvent tolerant esterase from Pseudomonas putida ECU1011: catalytic properties and performance in kinetic resolution of α-hydroxy acids. Ma BD, Yu HL, Pan J, Liu JY, Ju X, Xu JH. Bioresour Technol; 2013 Apr 31; 133():354-60. PubMed ID: 23434813 [Abstract] [Full Text] [Related] Page: [Next] [New Search]