These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
629 related items for PubMed ID: 16626705
1. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Vazey EM, Chen K, Hughes SM, Connor B. Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705 [Abstract] [Full Text] [Related]
2. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neuroscience; 2004 Jun; 127(2):319-32. PubMed ID: 15262322 [Abstract] [Full Text] [Related]
3. Temporal profile of subventricular zone progenitor cell migration following quinolinic acid-induced striatal cell loss. Gordon RJ, Tattersfield AS, Vazey EM, Kells AP, McGregor AL, Hughes SM, Connor B. Neuroscience; 2007 Jun 08; 146(4):1704-18. PubMed ID: 17459592 [Abstract] [Full Text] [Related]
4. Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson's disease. Aponso PM, Faull RL, Connor B. Neuroscience; 2008 Feb 19; 151(4):1142-53. PubMed ID: 18201835 [Abstract] [Full Text] [Related]
5. AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Henry RA, Hughes SM, Connor B. Eur J Neurosci; 2007 Jun 19; 25(12):3513-25. PubMed ID: 17610571 [Abstract] [Full Text] [Related]
7. Striatal carotid body graft promotes differentiation of neural progenitor cells into neurons in the olfactory bulb of adult hemiparkisonian rats. Belzunegui S, Izal-Azcárate A, San Sebastián W, Garrido-Gil P, Vázquez-Claverie M, López B, Marcilla I, Luquin MR. Brain Res; 2008 Jun 27; 1217():213-20. PubMed ID: 18502401 [Abstract] [Full Text] [Related]
8. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Darsalia V, Kallur T, Kokaia Z. Eur J Neurosci; 2007 Aug 27; 26(3):605-14. PubMed ID: 17686040 [Abstract] [Full Text] [Related]
9. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Collin T, Arvidsson A, Kokaia Z, Lindvall O. Exp Neurol; 2005 Sep 27; 195(1):71-80. PubMed ID: 15936016 [Abstract] [Full Text] [Related]
10. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN. Mol Cell Neurosci; 2008 Mar 27; 37(3):454-70. PubMed ID: 18083596 [Abstract] [Full Text] [Related]
11. Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Song J, Lee ST, Kang W, Park JE, Chu K, Lee SE, Hwang T, Chung H, Kim M. Neurosci Lett; 2007 Aug 09; 423(1):58-61. PubMed ID: 17669593 [Abstract] [Full Text] [Related]
12. Behavioral/neurophysiological investigation of effects of combining a quinolinic acid entopeduncular lesion with a fetal mesencephalic tissue transplant in striatum of the 6-OHDA hemilesioned rat. Olds ME, Jacques DB, Kpoyov O. Synapse; 2003 Jul 09; 49(1):1-11. PubMed ID: 12710010 [Abstract] [Full Text] [Related]
13. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. Kallur T, Darsalia V, Lindvall O, Kokaia Z. J Neurosci Res; 2006 Dec 09; 84(8):1630-44. PubMed ID: 17044030 [Abstract] [Full Text] [Related]
14. Mesencephalic human neural progenitor cells transplanted into the adult hemiparkinsonian rat striatum lack dopaminergic differentiation but improve motor behavior. Hovakimyan M, Haas SJ, Schmitt O, Gerber B, Wree A, Andressen C. Cells Tissues Organs; 2008 Dec 09; 188(4):373-83. PubMed ID: 18560206 [Abstract] [Full Text] [Related]
15. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease. Alexi T, Hughes PE, van Roon-Mom WM, Faull RL, Williams CE, Clark RG, Gluckman PD. Exp Neurol; 1999 Sep 09; 159(1):84-97. PubMed ID: 10486177 [Abstract] [Full Text] [Related]
17. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH. J Comp Neurol; 2004 Jul 19; 475(2):211-9. PubMed ID: 15211462 [Abstract] [Full Text] [Related]
18. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Döbrössy MD, Dunnett SB. Neuroscience; 2005 Jul 19; 132(3):543-52. PubMed ID: 15837116 [Abstract] [Full Text] [Related]
19. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU. Neurobiol Dis; 2004 Jun 19; 16(1):68-77. PubMed ID: 15207263 [Abstract] [Full Text] [Related]
20. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Schackel S, Pauly MC, Piroth T, Nikkhah G, Döbrössy MD. Behav Brain Res; 2013 Nov 01; 256():56-63. PubMed ID: 23916743 [Abstract] [Full Text] [Related] Page: [Next] [New Search]