These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 16629036
21. Inhibitory effect of a combination with novel jumbo bacteriophages ΦMV-1 and ΦMV-4 on Morganella morganii subsp. morganii growth and histamine accumulation. Yamaki S, Kuronuma S, Kawai Y, Yamazaki K. Int J Food Microbiol; 2020 Mar 16; 317():108457. PubMed ID: 31816558 [Abstract] [Full Text] [Related]
22. Monitoring volatile and nonvolatile amines in dried and salted roes of tuna (Thunnus thynnus L.) during manufacture and storage. Periago MJ, Rodrigo J, Ros G, Rodríguez-Jérez JJ, Hernández-Herrero M. J Food Prot; 2003 Feb 16; 66(2):335-40. PubMed ID: 12597499 [Abstract] [Full Text] [Related]
23. [Literature Review on the Type of Fish and Histamine-producing Bacteria Associated with Histamine Poisonings in Japan]. Tomaru A, Toda M, Hara-Kudo Y. Shokuhin Eiseigaku Zasshi; 2022 Feb 16; 63(3):109-116. PubMed ID: 35858795 [Abstract] [Full Text] [Related]
24. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2 degrees C. Emborg J, Laursen BG, Rathjen T, Dalgaard P. J Appl Microbiol; 2002 Feb 16; 92(4):790-9. PubMed ID: 11966922 [Abstract] [Full Text] [Related]
25. Control of Histamine-Producing Bacteria and Histamine Formation in Fish Muscle by Trisodium Phosphate. Bjornsdottir-Butler K, Green DP, Bolton GE, McClellan-Green PD. J Food Sci; 2015 Jun 16; 80(6):M1253-8. PubMed ID: 25920380 [Abstract] [Full Text] [Related]
26. Microbiological safety of dry-cured fish from the raw material to the end of processing. Indio V, Savini F, Gardini F, Barbieri F, Prandini L, Mekonnen YT, Tomasello F, Giacometti F, Seguino A, Serraino A, De Cesare A. Int J Food Microbiol; 2024 Apr 16; 415():110641. PubMed ID: 38432054 [Abstract] [Full Text] [Related]
27. Histamine food poisoning: a sudden, large outbreak linked to fresh yellowfin tuna from Reunion Island, France, April 2017. Velut G, Delon F, Mérigaud JP, Tong C, Duflos G, Boissan F, Watier-Grillot S, Boni M, Derkenne C, Dia A, Texier G, Vest P, Meynard JB, Fournier PE, Chesnay A, Pommier de Santi V. Euro Surveill; 2019 May 16; 24(22):. PubMed ID: 31164189 [Abstract] [Full Text] [Related]
28. Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Bjornsdottir-Butler K, Jones JL, Benner R, Burkhardt W. Food Microbiol; 2011 May 16; 28(3):356-63. PubMed ID: 21356438 [Abstract] [Full Text] [Related]
29. Characterization of a novel enzyme from Photobacterium phosphoreum with histidine decarboxylase activity. Bjornsdottir-Butler K, May S, Hayes M, Abraham A, Benner RA. Int J Food Microbiol; 2020 Dec 02; 334():108815. PubMed ID: 32966918 [Abstract] [Full Text] [Related]
30. Prevalence and Characterization of High Histamine-Producing Bacteria in Gulf of Mexico Fish Species. Bjornsdottir-Butler K, Bowers JC, Benner RA. J Food Prot; 2015 Jul 02; 78(7):1335-42. PubMed ID: 26197285 [Abstract] [Full Text] [Related]
31. The effect of biogenic amine production by single bacterial cultures and metabiosis on cold-smoked salmon. Jørgensen LV, Huss HH, Dalgaard P. J Appl Microbiol; 2000 Dec 02; 89(6):920-34. PubMed ID: 11123465 [Abstract] [Full Text] [Related]
32. Application of the Bigelow (z-value) model and histamine detection to determine the time and temperature required to eliminate Morganella morganii from seafood. Osborne CM, Bremer PJ. J Food Prot; 2000 Feb 02; 63(2):277-80. PubMed ID: 10678437 [Abstract] [Full Text] [Related]
33. Emetic disease caused by Bacillus cereus after consumption of tuna fish in a beach club. Doménech-Sánchez A, Laso E, Pérez MJ, Berrocal CI. Foodborne Pathog Dis; 2011 Jul 02; 8(7):835-7. PubMed ID: 21381943 [Abstract] [Full Text] [Related]
35. [Histamine formation in Japanese marine fish species and the effect of frozen storage]. Hayakawa R, Kobayashi N, Kato N, Hara-Kudo Y, Araki E. Shokuhin Eiseigaku Zasshi; 2013 Mar 14; 54(6):402-9. PubMed ID: 24389471 [Abstract] [Full Text] [Related]
36. Modelling the effect of temperature, carbon dioxide, water activity and pH on growth and histamine formation by Morganella psychrotolerans. Emborg J, Dalgaard P. Int J Food Microbiol; 2008 Dec 10; 128(2):226-33. PubMed ID: 18845351 [Abstract] [Full Text] [Related]
37. Storage Time and Temperature Effects on Histamine Production in Tuna Salad Preparations. McCarthy S, Bjornsdottir-Butler K, Benner R. J Food Prot; 2015 Jul 10; 78(7):1343-9. PubMed ID: 26197286 [Abstract] [Full Text] [Related]
38. Determination of trans- and cis-urocanic acid in relation to histamine, putrescine, and cadaverine contents in tuna (Auxis Thazard) at different storage temperatures. Zare D, Muhammad K, Bejo MH, Ghazali HM. J Food Sci; 2015 Feb 10; 80(2):T479-83. PubMed ID: 25586500 [Abstract] [Full Text] [Related]
39. [Histamine formation by Proteus species in tunafish (author's transl)]. Yamani MI, Dickertmann D, Untermann F. Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Sep 10; 173(6):478-87. PubMed ID: 7198852 [Abstract] [Full Text] [Related]
40. Validation Study of MaxSignal® Histamine Enzymatic Assay for the Detection of Histamine in Fish/Seafood. Gone S, Kosa N, Krebs J, Hungerford J, Trucksess M, DeWitt C. J AOAC Int; 2018 May 01; 101(3):783-792. PubMed ID: 28911343 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]