These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2278 related items for PubMed ID: 16630051

  • 1. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors.
    Shemer I, Holmgren C, Min R, Fülöp L, Zilberter M, Sousa KM, Farkas T, Härtig W, Penke B, Burnashev N, Tanila H, Zilberter Y, Harkany T.
    Eur J Neurosci; 2006 Apr; 23(8):2035-47. PubMed ID: 16630051
    [Abstract] [Full Text] [Related]

  • 2. Amyloid beta-peptide Abeta(1-42) but not Abeta(1-40) attenuates synaptic AMPA receptor function.
    Parameshwaran K, Sims C, Kanju P, Vaithianathan T, Shonesy BC, Dhanasekaran M, Bahr BA, Suppiramaniam V.
    Synapse; 2007 Jun; 61(6):367-74. PubMed ID: 17372971
    [Abstract] [Full Text] [Related]

  • 3. Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer v pyramidal neurons.
    Shin J, Shen F, Huguenard JR.
    J Neurophysiol; 2005 May; 93(5):2634-43. PubMed ID: 15574796
    [Abstract] [Full Text] [Related]

  • 4. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 5. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in prefrontal cortical pyramidal neurons by a novel allosteric potentiator.
    Baumbarger PJ, Muhlhauser M, Zhai J, Yang CR, Nisenbaum ES.
    J Pharmacol Exp Ther; 2001 Jul; 298(1):86-102. PubMed ID: 11408529
    [Abstract] [Full Text] [Related]

  • 6. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A, Jüngling K, Gottmann K.
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [Abstract] [Full Text] [Related]

  • 7. Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortex.
    Takada N, Yanagawa Y, Komatsu Y.
    Eur J Neurosci; 2005 Jan; 21(2):422-30. PubMed ID: 15673441
    [Abstract] [Full Text] [Related]

  • 8. Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches.
    Bottjer SW.
    J Neurophysiol; 2005 Dec; 94(6):3698-707. PubMed ID: 16107531
    [Abstract] [Full Text] [Related]

  • 9. Deletion of the C-terminal domain of the NR2B subunit alters channel properties and synaptic targeting of N-methyl-D-aspartate receptors in nascent neocortical synapses.
    Mohrmann R, Köhr G, Hatt H, Sprengel R, Gottmann K.
    J Neurosci Res; 2002 May 01; 68(3):265-75. PubMed ID: 12111856
    [Abstract] [Full Text] [Related]

  • 10. Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses.
    Yanagisawa T, Tsumoto T, Kimura F.
    Eur J Neurosci; 2004 Dec 01; 20(11):3006-18. PubMed ID: 15579155
    [Abstract] [Full Text] [Related]

  • 11. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.
    Fernández de Sevilla D, Fuenzalida M, Porto Pazos AB, Buño W.
    J Neurophysiol; 2007 May 01; 97(5):3242-55. PubMed ID: 17329628
    [Abstract] [Full Text] [Related]

  • 12. Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus.
    Pandis C, Sotiriou E, Kouvaras E, Asprodini E, Papatheodoropoulos C, Angelatou F.
    Neuroscience; 2006 Jun 19; 140(1):163-75. PubMed ID: 16542781
    [Abstract] [Full Text] [Related]

  • 13. Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala.
    Haseneder R, Kratzer S, Kochs E, Eckle VS, Zieglgänsberger W, Rammes G.
    Anesthesiology; 2008 Dec 19; 109(6):998-1006. PubMed ID: 19034096
    [Abstract] [Full Text] [Related]

  • 14. Ca2+-permeable AMPA receptors mediate induction of test pulse depression of naive synapses in rat visual cortical slices at early postnatal stage.
    Meng K, Li YH, Zhang L, Li P, Han TZ.
    Neuroscience; 2010 Feb 03; 165(3):684-91. PubMed ID: 19925855
    [Abstract] [Full Text] [Related]

  • 15. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn.
    Haseneder R, Kratzer S, Kochs E, Mattusch C, Eder M, Rammes G.
    Anesthesiology; 2009 Dec 03; 111(6):1297-307. PubMed ID: 19934875
    [Abstract] [Full Text] [Related]

  • 16. AMPA receptor modulators have different impact on hippocampal pyramidal cells and interneurons.
    Xia YF, Arai AC.
    Neuroscience; 2005 Dec 03; 135(2):555-67. PubMed ID: 16125852
    [Abstract] [Full Text] [Related]

  • 17. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice.
    Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O.
    Ann Neurol; 2004 Jun 03; 55(6):801-14. PubMed ID: 15174014
    [Abstract] [Full Text] [Related]

  • 18. Long-term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex.
    Toyoda H, Wu LJ, Zhao MG, Xu H, Jia Z, Zhuo M.
    J Cell Physiol; 2007 May 03; 211(2):336-43. PubMed ID: 17149707
    [Abstract] [Full Text] [Related]

  • 19. Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease.
    Goto Y, Niidome T, Hongo H, Akaike A, Kihara T, Sugimoto H.
    Eur J Pharmacol; 2008 Mar 31; 583(1):84-91. PubMed ID: 18282567
    [Abstract] [Full Text] [Related]

  • 20. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T, Onoda N.
    Neuroscience; 2005 Mar 31; 135(2):583-94. PubMed ID: 16112479
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 114.