These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


338 related items for PubMed ID: 16635569

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Electrotransfection of mammalian cells using microchannel-type electroporation chip.
    Shin YS, Cho K, Kim JK, Lim SH, Park CH, Lee KB, Park Y, Chung C, Han DC, Chang JK.
    Anal Chem; 2004 Dec 01; 76(23):7045-52. PubMed ID: 15571358
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM, Williams JJ, Kruzel SP, Gidden MJ, Williams JC.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 01; 13(2):207-12. PubMed ID: 16003901
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Microelectrode array (MEA) platform for targeted neuronal transfection and recording.
    Jain T, Muthuswamy J.
    IEEE Trans Biomed Eng; 2008 Feb 01; 55(2 Pt 2):827-32. PubMed ID: 18270028
    [Abstract] [Full Text] [Related]

  • 11. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY, Bhunia AK, Lu C.
    Biosens Bioelectron; 2006 Dec 15; 22(5):582-8. PubMed ID: 16530400
    [Abstract] [Full Text] [Related]

  • 12. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP, Chen JJ, Liao JD, Tzeng SF.
    Biomed Microdevices; 2008 Feb 15; 10(1):99-111. PubMed ID: 17674208
    [Abstract] [Full Text] [Related]

  • 13. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY, Lu C.
    Anal Chem; 2006 Jul 15; 78(14):5158-64. PubMed ID: 16841942
    [Abstract] [Full Text] [Related]

  • 14. Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage.
    Zhu T, Luo C, Huang J, Xiong C, Ouyang Q, Fang J.
    Biomed Microdevices; 2010 Feb 15; 12(1):35-40. PubMed ID: 19757070
    [Abstract] [Full Text] [Related]

  • 15. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement.
    Lin YC, Li M, Wu CC.
    Lab Chip; 2004 Apr 15; 4(2):104-8. PubMed ID: 15052348
    [Abstract] [Full Text] [Related]

  • 16. Single cell electroporation using microfluidic devices.
    Le Gac S, van den Berg A.
    Methods Mol Biol; 2012 Apr 15; 853():65-82. PubMed ID: 22323141
    [Abstract] [Full Text] [Related]

  • 17. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E, Ghirardi M, Fiumara F, Rosell X, Cabestany J.
    J Neural Eng; 2005 Jun 15; 2(2):L1-7. PubMed ID: 15928406
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection.
    Durdík Š, Krafčík A, Babincová M, Babinec P.
    Phys Med; 2013 Sep 15; 29(5):562-7. PubMed ID: 23260767
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.