These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


285 related items for PubMed ID: 16638841

  • 1. Design of new benzoxazole-2-thione-derived inhibitors of Streptococcus pneumoniae hyaluronan lyase: structure of a complex with a 2-phenylindole.
    Rigden DJ, Botzki A, Nukui M, Mewbourne RB, Lamani E, Braun S, von Angerer E, Bernhardt G, Dove S, Buschauer A, Jedrzejas MJ.
    Glycobiology; 2006 Aug; 16(8):757-65. PubMed ID: 16638841
    [Abstract] [Full Text] [Related]

  • 2. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase.
    Braun S, Botzki A, Salmen S, Textor C, Bernhardt G, Dove S, Buschauer A.
    Eur J Med Chem; 2011 Sep; 46(9):4419-29. PubMed ID: 21803461
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of hyaluronan binding and degradation: structure of Streptococcus pneumoniae hyaluronate lyase in complex with hyaluronic acid disaccharide at 1.7 A resolution.
    Ponnuraj K, Jedrzejas MJ.
    J Mol Biol; 2000 Jun 16; 299(4):885-95. PubMed ID: 10843845
    [Abstract] [Full Text] [Related]

  • 4. Domain motions of hyaluronan lyase underlying processive hyaluronan translocation.
    Joshi HV, Jedrzejas MJ, de Groot BL.
    Proteins; 2009 Jul 16; 76(1):30-46. PubMed ID: 19089975
    [Abstract] [Full Text] [Related]

  • 5. Calf spleen purine-nucleoside phosphorylase: crystal structure of the binary complex with a potent multisubstrate analogue inhibitor.
    Luić M, Koellner G, Yokomatsu T, Shibuya S, Bzowska A.
    Acta Crystallogr D Biol Crystallogr; 2004 Aug 16; 60(Pt 8):1417-24. PubMed ID: 15272165
    [Abstract] [Full Text] [Related]

  • 6. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes.
    Watanabe D, Yamamoto A, Tomoo K, Matsumoto K, Murata M, Kitamura K, Ishida T.
    J Mol Biol; 2006 Oct 06; 362(5):979-93. PubMed ID: 16950396
    [Abstract] [Full Text] [Related]

  • 7. Genome-based identification of a carbohydrate binding module in Streptococcus pneumoniae hyaluronate lyase.
    Rigden DJ, Jedrzejas MJ.
    Proteins; 2003 Aug 01; 52(2):203-11. PubMed ID: 12833544
    [Abstract] [Full Text] [Related]

  • 8. Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid-splitting enzymes.
    Hertel W, Peschel G, Ozegowski JH, Müller PJ.
    Arch Pharm (Weinheim); 2006 Jun 01; 339(6):313-8. PubMed ID: 16718670
    [Abstract] [Full Text] [Related]

  • 9. Structure-guided discovery of cyclin-dependent kinase inhibitors.
    Fischmann TO, Hruza A, Duca JS, Ramanathan L, Mayhood T, Windsor WT, Le HV, Guzi TJ, Dwyer MP, Paruch K, Doll RJ, Lees E, Parry D, Seghezzi W, Madison V.
    Biopolymers; 2008 May 01; 89(5):372-9. PubMed ID: 17937404
    [Abstract] [Full Text] [Related]

  • 10. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y, Nakajima Y, Ito K, Zheng H, Oyama H, Heiser U, Hoffmann T, Gärtner UT, Demuth HU, Yoshimoto T.
    J Mol Biol; 2008 Jan 18; 375(3):708-19. PubMed ID: 18042490
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Polysaccharide binding sites in hyaluronate lyase--crystal structures of native phage-encoded hyaluronate lyase and its complexes with ascorbic acid and lactose.
    Mishra P, Prem Kumar R, Ethayathulla AS, Singh N, Sharma S, Perbandt M, Betzel C, Kaur P, Srinivasan A, Bhakuni V, Singh TP.
    FEBS J; 2009 Jun 18; 276(12):3392-402. PubMed ID: 19438710
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structure-based optimization of MurF inhibitors.
    Stamper GF, Longenecker KL, Fry EH, Jakob CG, Florjancic AS, Gu YG, Anderson DD, Cooper CS, Zhang T, Clark RF, Cia Y, Black-Schaefer CL, Owen McCall J, Lerner CG, Hajduk PJ, Beutel BA, Stoll VS.
    Chem Biol Drug Des; 2006 Jan 18; 67(1):58-65. PubMed ID: 16492149
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors.
    Dublanchet AC, Ducrot P, Andrianjara C, O'Gara M, Morales R, Compère D, Denis A, Blais S, Cluzeau P, Courté K, Hamon J, Moreau F, Prunet ML, Tertre A.
    Bioorg Med Chem Lett; 2005 Aug 15; 15(16):3787-90. PubMed ID: 16002291
    [Abstract] [Full Text] [Related]

  • 18. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE.
    J Mol Biol; 2008 Feb 01; 375(5):1293-305. PubMed ID: 18078955
    [Abstract] [Full Text] [Related]

  • 19. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors.
    Vulpetti A, Casale E, Roletto F, Amici R, Villa M, Pevarello P.
    J Mol Graph Model; 2006 Mar 01; 24(5):341-8. PubMed ID: 16260160
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.