These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Influence of acoustic loading on an effective single mass model of the vocal folds. Zañartu M, Mongeau L, Wodicka GR. J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533 [Abstract] [Full Text] [Related]
8. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies. Kimura M, Mau T, Chan RW. Laryngoscope; 2010 Apr; 120(4):764-8. PubMed ID: 20213661 [Abstract] [Full Text] [Related]
11. Phonation threshold pressure in a physical model of the vocal fold mucosa. Titze IR, Schmidt SS, Titze MR. J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648 [Abstract] [Full Text] [Related]
12. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. Zhang Z, Neubauer J, Berry DA. J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864 [Abstract] [Full Text] [Related]
17. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice. Titze IR. J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101 [Abstract] [Full Text] [Related]
19. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds. Lucero JC, Lourenço K, Hermant N, Van Hirtum A, Pelorson X. J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487 [Abstract] [Full Text] [Related]
20. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production. Bodaghi D, Jiang W, Xue Q, Zheng X. J Biomech Eng; 2021 Apr 01; 143(4):. PubMed ID: 33399816 [Abstract] [Full Text] [Related] Page: [Next] [New Search]